Analysis and comparison of feature selection methods towards performance and stability

可解释性 特征选择 计算机科学 维数之咒 理论(学习稳定性) 冗余(工程) 选择(遗传算法) Python(编程语言) 人工智能 机器学习 降维 最小冗余特征选择 数据挖掘 操作系统
作者
Matheus Cezimbra Barbieri,Bruno Iochins Grisci,Márcio Dorn
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123667-123667 被引量:21
标识
DOI:10.1016/j.eswa.2024.123667
摘要

The amount of gathered data is increasing at unprecedented rates for machine learning applications such as natural language processing, computer vision, and bioinformatics. This increase implies a higher number of samples and features; thus, some problems regarding highly dimensional data arise. The curse of dimensionality, small samples, noisy or redundant features, and biased data are among them. Feature selection is fundamental to dealing with such problems. It reduces the data dimensionality by selecting the most relevant and less redundant features. Thus reducing the computational cost, improving accuracy, and enhancing the data's interpretability to machine learning models and domain experts. However, there are several selector options from which to choose. This work compares some of the most representative algorithms from different feature selection groups regarding a broad range of measures, several datasets, and different strategies from diverse perspectives. We employ metrics to appraise selection accuracy, selection redundancy, prediction performance, algorithmic stability, selection reliability, and computational time of several feature selection algorithms. We developed and shared a new open Python framework to benchmark the algorithms. The results highlight the strengths and weaknesses of these algorithms and can guide their application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助嘻嘻采纳,获得10
1秒前
科研通AI2S应助任性雨筠采纳,获得10
1秒前
2秒前
发发完成签到 ,获得积分10
3秒前
heyheybaby发布了新的文献求助10
5秒前
7秒前
wyl发布了新的文献求助10
8秒前
等待戈多发布了新的文献求助30
8秒前
研友_VZG7GZ应助jiayou采纳,获得10
9秒前
9秒前
11秒前
11秒前
11秒前
嘻嘻发布了新的文献求助10
12秒前
ZiruiDing完成签到 ,获得积分10
13秒前
猴儿完成签到,获得积分20
13秒前
qiulong发布了新的文献求助10
14秒前
康师傅冰红茶完成签到,获得积分10
14秒前
14秒前
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
songyy发布了新的文献求助10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
meo应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研助手6应助科研通管家采纳,获得20
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得30
16秒前
小海应助科研通管家采纳,获得10
16秒前
小白发布了新的文献求助20
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研助手6应助科研通管家采纳,获得10
16秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462