Removal of Micropollutants in Industrial Wastewater Using Microalgae

废水 环境科学 工业废水处理 废物管理 制浆造纸工业 环境工程 工程类
作者
Melih Onay,Aytun Onay
标识
DOI:10.1002/9783527843367.ch17
摘要

Chapter 17 Removal of Micropollutants in Industrial Wastewater Using Microalgae Melih Onay, Melih Onay Van Yuzuncu Yil University, Department of Environmental Engineering, Van,, 65080 TurkeySearch for more papers by this authorAytun Onay, Aytun Onay Turkish Aeronautical Association University, Engineering Faculty, Software Engineering, Ankara,, 06790 TurkeySearch for more papers by this author Melih Onay, Melih Onay Van Yuzuncu Yil University, Department of Environmental Engineering, Van,, 65080 TurkeySearch for more papers by this authorAytun Onay, Aytun Onay Turkish Aeronautical Association University, Engineering Faculty, Software Engineering, Ankara,, 06790 TurkeySearch for more papers by this author Book Editor(s):Gokare A. Ravishankar, Gokare A. Ravishankar Dayananda Sagar Institutions, Bengaluru, IndiaSearch for more papers by this authorAmbati Ranga Rao, Ambati Ranga Rao Technology and Research (Deemed to be University), Vignan's Foundation for Science, Andhra Pradesh, Guntur, 522213 IndiaSearch for more papers by this authorSe-Kwon Kim, Se-Kwon Kim Hanyang University ERICA, 55 Hanyangdae-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 11558 South KoreaSearch for more papers by this author First published: 29 March 2024 https://doi.org/10.1002/9783527843367.ch17 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Microalgae are gaining popularity due to their rapid growth and ability to use organic metabolism, for the removal of micropollutants from wastewater ( WW ). Micropollutants can be defined as pollutants that are present at the level of micrograms per liter and have a bad effect on the environment and living life and microalgae can remove these compounds, such as organic, inorganic, pharmaceutical, and hormonally active substances, from industrial WW. The purpose of this chapter is to explain how microalgae can be used to remove micropollutants from industrial WW using methods such as adsorption, bioaccumulation, photodegradation, biotransformation, volatilization, and biodegradation, and to investigate how artificial neural networks, fuzzy logic, random forests, long-short term memory, and reinforcement learning methods in wastewater treatment. References Abdelfattah , A. , Ali , S.S. , Ramadan , H. et al. ( 2023 ). Microalgae-based wastewater treatment: mechanisms, challenges, recent advances, and future prospects . Environmental Science and Ecotechnology 13 : 100205 . https://doi.org/10.1016/j.ese.2022.100205 . 10.1016/j.ese.2022.100205 CASPubMedGoogle Scholar Altowayti , W.A.H. , Shahir , S. , Othman , N. et al. ( 2022 ). The role of conventional methods and artificial intelligence in the wastewater treatment: a comprehensive review . Processes 10 ( 9 ): 1 – 31 . https://doi.org/10.3390/pr10091832 . 10.3390/pr10091832 Google Scholar Avila , R. , Peris , A. , Eljarrat , E. et al. ( 2021 ). Biodegradation of hydrophobic pesticides by microalgae: transformation products and impact on algae biochemical methane potential . Science of the Total Environment 754 : 142114 . https://doi.org/10.1016/j.scitotenv.2020.142114 . 10.1016/j.scitotenv.2020.142114 CASPubMedWeb of Science®Google Scholar Bai , X. and Acharya , K. ( 2019 ). Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga . Environmental Pollution 247 : 534 – 540 . https://doi.org/10.1016/j.envpol.2019.01.075 . 10.1016/j.envpol.2019.01.075 CASPubMedWeb of Science®Google Scholar Baruah , P. and Chaurasia , N. ( 2022 ). The application of microalgae for bioremediation of pharmaceuticals from wastewater: recent trend and possibilities . In: Phycology-Based Approaches for Wastewater Treatment and Resource Recovery (ed. P. Verma and M. Shah ), 149 – 174 . Florida, USA : CRC Press . Google Scholar Casagli , F. , Zuccaro , G. , Bernard , O. et al. ( 2021 ). ALBA: a comprehensive growth model to optimize algae-bacteria wastewater treatment in raceway ponds . Water Research 190 : 116734 . https://doi.org/10.1016/j.watres.2020.116734 . 10.1016/j.watres.2020.116734 CASPubMedWeb of Science®Google Scholar Chavoshani , A. , Hashemi , M. , Amin , M.M. , and Ameta , S.C. ( 2020a ). Conclusion and future research . In: Micropollutants and Challenges (ed. A. Chavoshani , M. Hashemi , M.M. Amin , and S.C. Ameta ), 249 – 256 . Amsterdam, Netherlands : Elsevier . 10.1016/B978-0-12-818612-1.00007-6 Google Scholar Chavoshani , A. , Hashemi , M. , Amin , M.M. , and Ameta , S.C. ( 2020b ). Personal care products as an endocrine disrupting compound in the aquatic environment . In: Micropollutants and Challenges (ed. A. Chavoshani , M. Hashemi , M.M. Amin , and S.C. Ameta ), 91 – 144 . Amsterdam, Netherlands : Elsevier . 10.1016/B978-0-12-818612-1.00003-9 Google Scholar Cheng , Y. and Wang , H. ( 2022 ). Highly effective removal of microplastics by microalgae Scenedesmus abundans . Chemical Engineering Journal 435 : 135079 . https://doi.org/10.1016/j.cej.2022.135079 . 10.1016/j.cej.2022.135079 CASGoogle Scholar Chimchirian , R.F. , Suri , R.P.S. , and Fu , H. ( 2007 ). Free synthetic and natural estrogen hormones in influent and effluent of three municipal wastewater treatment plants . Water Environment Research 79 ( 4 ): 969 – 974 . https://doi.org/10.2175/106143007X175843 . 10.2175/106143007X175843 CASPubMedGoogle Scholar Coimbra , R.N. , Escapa , C. , and Otero , M. ( 2021 ). Removal of pharmaceuticals from water: conventional and alternative treatments . Water 13 ( 4 ): 487 . https://doi.org/10.3390/w13040487 . 10.3390/w13040487 Google Scholar Decostere , B. , De Craene , J. , Van Hoey , S. et al. ( 2016 ). Validation of a microalgal growth model accounting with inorganic carbon and nutrient kinetics for wastewater treatment . Chemical Engineering Journal 285 : 189 – 197 . https://doi.org/10.1016/j.cej.2015.09.111 . 10.1016/j.cej.2015.09.111 CASWeb of Science®Google Scholar Du , J. , Izquierdo , D. , Naoum , J. et al. ( 2023 ). Pesticide responses of arctic and temperate microalgae differ in relation to ecophysiological characteristics . Aquatic Toxicology 254 ( August 2022 ): 106323 . https://doi.org/10.1016/j.aquatox.2022.106323 . 10.1016/j.aquatox.2022.106323 CASPubMedGoogle Scholar Fan , H. , Wang , K. , Wang , C. et al. ( 2020 ). A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes . Environmental Technology and Innovation 19 ( 5 ): 100849 . https://doi.org/10.1016/j.eti.2020.100849 . 10.1016/j.eti.2020.100849 Google Scholar Farhi , N. , Kohen , E. , Mamane , H. , and Shavitt , Y. ( 2021 ). Prediction of wastewater treatment quality using LSTM neural network . Environmental Technology and Innovation 23 : 101632 . https://doi.org/10.1016/j.eti.2021.101632 . 10.1016/j.eti.2021.101632 CASGoogle Scholar Ferrando , L. and Matamoros , V. ( 2020 ). Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae-based systems . Science of the Total Environment 703 : 134740 . https://doi.org/10.1016/j.scitotenv.2019.134740 . 10.1016/j.scitotenv.2019.134740 CASPubMedWeb of Science®Google Scholar García-Galan , M.J. , Monllor-Alcaraz , L.S. , Postigo , C. et al. ( 2020 ). Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas . Environmental Pollution 265 : 114579 . https://doi.org/10.1016/j.envpol.2020.114579 . 10.1016/j.envpol.2020.114579 CASPubMedGoogle Scholar Han , M. , Zhang , C. , Li , F. , and Ho , S.H. ( 2022 ). Data-driven analysis on immobilized microalgae system: new upgrading trends for microalgal wastewater treatment . Science of the Total Environment 852 ( August ): 158514 . https://doi.org/10.1016/j.scitotenv.2022.158514 . 10.1016/j.scitotenv.2022.158514 CASPubMedGoogle Scholar Hom-diaz , A. , Llorca , M. , Rodríguez-mozaz , S. , and Vicent , T. ( 2015 ). Microalgae cultivation on wastewater digestate: b-estradiol and 17α-ethynylestradiol degradation and transformation products identification . Journal of Environmental Management 155 : 106 – 113 . https://doi.org/10.1016/j.jenvman.2015.03.003 . 10.1016/j.jenvman.2015.03.003 CASPubMedWeb of Science®Google Scholar Hou , H. , Wang , S. , Ji , B. et al. ( 2022 ). Adaptation responses of microalgal-bacterial granular sludge to polystyrene microplastic particles in municipal wastewater . Environmental Science and Pollution Research 59965 – 59973 . https://doi.org/10.1007/s11356-022-20107-2 . 10.1007/s11356-022-20107-2 PubMedGoogle Scholar Liu , R. , Li , S. , Tu , Y. , and Hao , X. ( 2021 ). Capabilities and mechanisms of microalgae on removing micropollutants from wastewater: a review . Journal of Environmental Management 285 : 112149 . https://doi.org/10.1016/j.jenvman.2021.112149 . 10.1016/j.jenvman.2021.112149 CASPubMedGoogle Scholar Manzi , H.P. , Zhang , M. , and Salama , E. ( 2022 ). Extensive investigation and beyond the removal of micro-polyvinyl chloride by microalgae to promote environmental health . Chemosphere 300 ( October 2021 ): 134530 . https://doi.org/10.1016/j.chemosphere.2022.134530 . 10.1016/j.chemosphere.2022.134530 CASPubMedGoogle Scholar Matamoros , V. and Rodríguez , Y. ( 2016 ). Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: a laboratory scale study . Journal of Hazardous Materials 309 : 126 – 132 . https://doi.org/10.1016/j.jhazmat.2016.01.080 . 10.1016/j.jhazmat.2016.01.080 CASPubMedWeb of Science®Google Scholar Matamoros , V. , Gutiérrez , R. , Ferrer , I. et al. ( 2015 ). Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study . Journal of Hazardous Materials 288 : 34 – 42 . https://doi.org/10.1016/j.jhazmat.2015.02.002 . 10.1016/j.jhazmat.2015.02.002 CASPubMedWeb of Science®Google Scholar Mojiri , A. , Baharlooeian , M. , Kazeroon , R.A. et al. ( 2021 ). Removal of pharmaceutical micropollutants with integrated biochar and marine microalgae . Microorganisms 9 ( 1 ): 1 – 20 . https://doi.org/10.3390/microorganisms9010004 . 10.3390/microorganisms9010004 Google Scholar Oruganti , R.K. , Katam , K. , Show , P.L. et al. ( 2022 ). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal . Bioengineered 13 ( 4 ): 10412 – 10453 . https://doi.org/10.1080/21655979.2022.2056823 . 10.1080/21655979.2022.2056823 CASPubMedGoogle Scholar Pinpatthanapong , K. , Khetkorn , W. , and Honda , R. ( 2022 ). Effects of high-strength landfill leachate effluent on stress-induced microalgae lipid production and post-treatment micropollutant degradation . Journal of Environmental Management 324 ( August ): 116367 . https://doi.org/10.1016/j.jenvman.2022.116367 . 10.1016/j.jenvman.2022.116367 CASPubMedGoogle Scholar Rambaldo , L. , Avila , H. , Casas , M.E. et al. ( 2022 ). Assessment of a novel microalgae-cork based technology for removing antibiotics, pesticides and nitrates from groundwater . Chemosphere 301 ( December 2021 ): https://doi.org/10.1016/j.chemosphere.2022.134777 . 10.1016/j.chemosphere.2022.134777 PubMedGoogle Scholar G.A. Ravishankar and R.R. Ambati (ed.) ( 2019b ). Handbook of Algal Technologies and Phytochemicals: Volume I Food, Health and Nutraceutical Applications . USA : CRC Press . Google Scholar Rodríguez-Rangel , H.R. , Arias , D.M. , Rosales , L.M.A. et al. ( 2022 ). Machine learning methods modeling carbohydrate-enriched cyanobacteria biomass production in wastewater treatment systems . Energies 15 ( 7 ): 2500 . https://doi.org/10.3390/en15072500 . 10.3390/en15072500 CASGoogle Scholar Sánchez-Zurano , A. , Rodríguez-miranda , E. , Guzmán , J.L. et al. ( 2021a ). Abaco: a new model of microalgae-bacteria consortia for biological treatment of wastewaters . Applied Sciences (Switzerland) 11 ( 3 ): 1 – 24 . https://doi.org/10.3390/app11030998 . 10.3390/app11030998 Google Scholar Sánchez-Zurano , A. , Guzmán , J.L. , Acién , F.G. , and Fernández-Sevilla , J.M. ( 2021b ). An interactive tool for simulation of biological models into the wastewater treatment with microalgae . Frontiers in Environmental Science 9 ( July ): 1 – 17 . https://doi.org/10.3389/fenvs.2021.721324 . 10.3389/fenvs.2021.721324 Google Scholar Singh , V. and Mishra , V. ( 2021 ). Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production . Biochemical Engineering Journal 174 ( May ): 108129 . https://doi.org/10.1016/j.bej.2021.108129 . 10.1016/j.bej.2021.108129 CASGoogle Scholar Sole , A. and Matamoros , M. ( 2016 ). Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads . Chemosphere 164 : 516 – 523 . https://doi.org/10.1016/j.chemosphere.2016.08.047 . 10.1016/j.chemosphere.2016.08.047 CASPubMedWeb of Science®Google Scholar Solimeno , A. , Gómez-Serrano , C. , and Acién , F.G. ( 2019 ). BIO_ALGAE 2: improved model of microalgae and bacteria consortia for wastewater treatment . Environmental Science and Pollution Research 26 ( 25 ): 25855 – 25868 . https://doi.org/10.1007/s11356-019-05824-5 . 10.1007/s11356-019-05824-5 CASPubMedGoogle Scholar Solovchenko , A. , Lukyanov , A. , Aswathanarayana , R.G. et al. ( 2020 ). Recent developments in microalgal conversion of organic-enriched waste streams . Current Opinion in Green and Sustainable Chemistry 24 : 61 – 66 . 10.1016/j.cogsc.2020.03.006 Web of Science®Google Scholar Sundui , B. , Ramirez Calderon , O.A. , Abdeldayem , O.M. et al. ( 2021 ). Applications of machine learning algorithms for biological wastewater treatment: updates and perspectives . Clean Technologies and Environmental Policy 23 ( 1 ): 127 – 143 . https://doi.org/10.1007/s10098-020-01993-x . 10.1007/s10098-020-01993-x CASGoogle Scholar Vassalle , L. , Ferrer , I. , Passos , F. , and Mota , C.R. ( 2020 ). Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere 248 : https://doi.org/10.1016/j.chemosphere.2020.125969 . 10.1016/j.chemosphere.2020.125969 PubMedGoogle Scholar Wan , L. , Wu , Y. , Ding , H. , and Zhang , W. ( 2020 ). Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii . Journal of Agricultural and Food Chemistry 68 : 1645 – 1653 . https://doi.org/10.1021/acs.jafc.9b05765 . 10.1021/acs.jafc.9b05765 CASPubMedGoogle Scholar Wang , Y. , Sun , Q. , Li , Y. et al. ( 2019 ). Biotransformation of estrone, 17β-estradiol and 17α-ethynylestradiol by four species of microalgae . Ecotoxicology and Environmental Safety 180 : 723 – 732 . https://doi.org/10.1016/j.ecoenv.2019.05.061 . 10.1016/j.ecoenv.2019.05.061 CASPubMedGoogle Scholar Yaakob , M.A. , Mohamed , R.M.S.R. , Al-Gheethi , A. et al. ( 2021 ). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview . Cells 10 ( 2 ): 393 . 10.3390/cells10020393 CASPubMedWeb of Science®Google Scholar Yang , L. , Ke , H. , Yao , H. , and Jiang , W. ( 2021 ). Effective and rapid removal of polar organic micropollutants from water by amide naphthotube-crosslinked polymers . Angewandte Chemie 133 : 21574 – 21581 . https://doi.org/10.1002/anie.202106998 . 10.1002/ange.202106998 Google Scholar Ye , S. , Rao , M. , Xiao , W. et al. ( 2023 ). The relative size of microalgal cells and microplastics determines the toxicity of microplastics to microalgae . Process Safety and Environmental Protection 169 ( November 2022 ): 860 – 868 . https://doi.org/10.1016/j.psep.2022.11.077 . 10.1016/j.psep.2022.11.077 CASGoogle Scholar Zhou , T. , Zhang , Z. , Liu , H. et al. ( 2023 ). A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: occurrence, fate, and removal mechanism . Journal of Hazardous Materials 443 : 130213 . https://doi.org/10.1016/j.jhazmat.2022.130213 . 10.1016/j.jhazmat.2022.130213 CASPubMedGoogle Scholar Algae Mediated Bioremediation: Industrial Prospectives ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助跳跃的听双采纳,获得10
刚刚
2秒前
2秒前
6秒前
刘梦瑶发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
9秒前
孙旭发布了新的文献求助10
9秒前
10秒前
andrele发布了新的文献求助10
10秒前
包容半青发布了新的文献求助30
10秒前
Let It Be发布了新的文献求助10
11秒前
JamesPei应助半夜汽笛采纳,获得10
12秒前
丹霞应助马某某某某某采纳,获得10
13秒前
隐形曼青应助碧蓝皮卡丘采纳,获得10
14秒前
14秒前
15秒前
刘梦瑶完成签到,获得积分10
15秒前
小二郎发布了新的文献求助10
16秒前
搜集达人应助研友_nPbeR8采纳,获得10
16秒前
17秒前
17秒前
Let It Be完成签到,获得积分10
18秒前
18秒前
吴博文发布了新的文献求助10
18秒前
KSung完成签到 ,获得积分10
20秒前
22秒前
我住隔壁我姓王完成签到,获得积分10
22秒前
半夜汽笛发布了新的文献求助10
23秒前
24秒前
坤坤完成签到,获得积分10
26秒前
yudandan@CJLU发布了新的文献求助10
27秒前
三年半完成签到,获得积分10
27秒前
包容半青完成签到,获得积分20
27秒前
张又蓝完成签到,获得积分10
31秒前
西红柿炒番茄应助阿肯李采纳,获得10
31秒前
炙热的山河应助Kikisman采纳,获得10
33秒前
33秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2482819
求助须知:如何正确求助?哪些是违规求助? 2145041
关于积分的说明 5472164
捐赠科研通 1867358
什么是DOI,文献DOI怎么找? 928220
版权声明 563073
科研通“疑难数据库(出版商)”最低求助积分说明 496600