Data Extraction from Free-Text Reports on Mechanical Thrombectomy in Acute Ischemic Stroke Using ChatGPT: A Retrospective Analysis

医学 麦克内马尔试验 冲程(发动机) 回顾性队列研究 缺血性中风 神经组阅片室 内科学 外科 急诊医学 缺血 神经学 机械工程 工程类 统计 数学 精神科
作者
Nils Christian Lehnen,Franziska Dorn,Isabella C. Wiest,Hanna Zimmermann,Alexander Radbruch,Jakob Nikolas Kather,Daniel Paech,Ariane Panzer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:20
标识
DOI:10.1148/radiol.232741
摘要

Background Procedural details of mechanical thrombectomy in patients with ischemic stroke are important predictors of clinical outcome and are collected for prospective studies or national stroke registries. To date, these data are collected manually by human readers, a labor-intensive task that is prone to errors. Purpose To evaluate the use of the large language models (LLMs) GPT-4 and GPT-3.5 to extract data from neuroradiology reports on mechanical thrombectomy in patients with ischemic stroke. Materials and Methods This retrospective study included consecutive reports from patients with ischemic stroke who underwent mechanical thrombectomy between November 2022 and September 2023 at institution 1 and between September 2016 and December 2019 at institution 2. A set of 20 reports was used to optimize the prompt, and the ability of the LLMs to extract procedural data from the reports was compared using the McNemar test. Data manually extracted by an interventional neuroradiologist served as the reference standard. Results A total of 100 internal reports from 100 patients (mean age, 74.7 years ± 13.2 [SD]; 53 female) and 30 external reports from 30 patients (mean age, 72.7 years ± 13.5; 18 male) were included. All reports were successfully processed by GPT-4 and GPT-3.5. Of 2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8]; range per category, 61%–100%) data points were correctly extracted by GPT-4 without the need for further postprocessing. With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%–99%; P < .001). For the external reports, GPT-4 extracted 760 of 840 (90.5% [95% CI: 88.3, 92.4]) correct data entries, while GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4]; P < .001). Conclusion Compared with GPT-3.5, GPT-4 more frequently extracted correct procedural data from free-text reports on mechanical thrombectomy performed in patients with ischemic stroke. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小丸子完成签到,获得积分10
3秒前
皮皮灵发布了新的文献求助10
4秒前
寒舟饮发布了新的文献求助30
6秒前
科研通AI5应助huang采纳,获得10
7秒前
小龅牙吖完成签到,获得积分10
7秒前
三石盟约完成签到,获得积分10
7秒前
CipherSage应助小鲨鱼采纳,获得10
7秒前
7秒前
9秒前
111发布了新的文献求助10
11秒前
12秒前
13秒前
斯文败类应助陈玥桦采纳,获得10
13秒前
15秒前
古月发布了新的文献求助10
16秒前
16秒前
蜕变发布了新的文献求助10
17秒前
半柚发布了新的文献求助10
18秒前
闪闪楷瑞完成签到,获得积分10
19秒前
Perry给L_online的求助进行了留言
20秒前
damahayu发布了新的文献求助10
21秒前
23秒前
lxlxllx89发布了新的文献求助10
23秒前
舒适的老虎完成签到,获得积分20
25秒前
0h完成签到,获得积分10
26秒前
Thunnus001完成签到,获得积分10
27秒前
脑洞疼应助半柚采纳,获得10
27秒前
28秒前
Belinda完成签到 ,获得积分10
28秒前
30秒前
Rookie发布了新的文献求助10
33秒前
33秒前
starleo完成签到,获得积分10
34秒前
王佳豪发布了新的文献求助10
38秒前
Rookie完成签到,获得积分10
39秒前
充电宝应助w934420513采纳,获得10
41秒前
44秒前
44秒前
babe完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366