Data Extraction from Free-Text Reports on Mechanical Thrombectomy in Acute Ischemic Stroke Using ChatGPT: A Retrospective Analysis

医学 麦克内马尔试验 冲程(发动机) 回顾性队列研究 缺血性中风 神经组阅片室 内科学 外科 急诊医学 缺血 神经学 机械工程 工程类 统计 数学 精神科
作者
Nils Christian Lehnen,Franziska Dorn,Isabella C. Wiest,Hanna Zimmermann,Alexander Radbruch,Jakob Nikolas Kather,Daniel Paech,Ariane Panzer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:20
标识
DOI:10.1148/radiol.232741
摘要

Background Procedural details of mechanical thrombectomy in patients with ischemic stroke are important predictors of clinical outcome and are collected for prospective studies or national stroke registries. To date, these data are collected manually by human readers, a labor-intensive task that is prone to errors. Purpose To evaluate the use of the large language models (LLMs) GPT-4 and GPT-3.5 to extract data from neuroradiology reports on mechanical thrombectomy in patients with ischemic stroke. Materials and Methods This retrospective study included consecutive reports from patients with ischemic stroke who underwent mechanical thrombectomy between November 2022 and September 2023 at institution 1 and between September 2016 and December 2019 at institution 2. A set of 20 reports was used to optimize the prompt, and the ability of the LLMs to extract procedural data from the reports was compared using the McNemar test. Data manually extracted by an interventional neuroradiologist served as the reference standard. Results A total of 100 internal reports from 100 patients (mean age, 74.7 years ± 13.2 [SD]; 53 female) and 30 external reports from 30 patients (mean age, 72.7 years ± 13.5; 18 male) were included. All reports were successfully processed by GPT-4 and GPT-3.5. Of 2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8]; range per category, 61%–100%) data points were correctly extracted by GPT-4 without the need for further postprocessing. With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%–99%; P < .001). For the external reports, GPT-4 extracted 760 of 840 (90.5% [95% CI: 88.3, 92.4]) correct data entries, while GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4]; P < .001). Conclusion Compared with GPT-3.5, GPT-4 more frequently extracted correct procedural data from free-text reports on mechanical thrombectomy performed in patients with ischemic stroke. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Abby发布了新的文献求助80
2秒前
2秒前
2秒前
Jasper应助二月红前来求文采纳,获得10
3秒前
weiling发布了新的文献求助10
3秒前
4秒前
梦里的大子刊完成签到 ,获得积分10
4秒前
小杨发布了新的文献求助10
5秒前
7秒前
科研通AI6应助冷艳的白竹采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
comeongong完成签到,获得积分10
9秒前
10秒前
XX发布了新的文献求助10
10秒前
满意曼荷发布了新的文献求助10
10秒前
小恐龙完成签到,获得积分10
10秒前
优雅草丛完成签到,获得积分10
12秒前
丘比特应助纯真凌晴采纳,获得10
13秒前
小鸣完成签到 ,获得积分10
14秒前
14秒前
科研民工发布了新的文献求助10
14秒前
15秒前
15秒前
沈飞飞关注了科研通微信公众号
15秒前
denly应助Amanda采纳,获得20
16秒前
jeanian发布了新的文献求助10
17秒前
甜甜的满天完成签到,获得积分10
17秒前
18秒前
19秒前
发嗲的炳发布了新的文献求助10
19秒前
20秒前
20秒前
Abby完成签到,获得积分10
20秒前
22秒前
23秒前
25秒前
26秒前
Akim应助小杨采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486450
求助须知:如何正确求助?哪些是违规求助? 4586000
关于积分的说明 14407437
捐赠科研通 4516467
什么是DOI,文献DOI怎么找? 2474801
邀请新用户注册赠送积分活动 1460741
关于科研通互助平台的介绍 1433828