A robust computational framework for variational data assimilation of mean flows with sparse measurements corrupted by strong outliers

离群值 数学 层流 平均流量 数据同化 雷诺平均Navier-Stokes方程 流量(数学) 计算流体力学 应用数学 强迫(数学) 算法 数学优化 数学分析 湍流 几何学 物理 机械 气象学 统计
作者
Souvik Ghosh,Vincent Mons,Denis Sipp,Peter J. Schmid
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:508: 113008-113008
标识
DOI:10.1016/j.jcp.2024.113008
摘要

A variational framework for the reconstruction of time-averaged mean flows using a sparse set of observations with large magnitudes of noise (referred to as outliers), is presented. The observations constitute a set of point-wise measurements of the flow field with outliers at certain measurement locations and are incorporated into a numerical simulation governed by the two-dimensional, incompressible Reynolds-averaged Navier–Stokes (RANS) equations with an unknown momentum forcing. This forcing, which corresponds to the divergence of the Reynolds stress tensor, is calculated from a direct-adjoint optimization procedure to reduce the deviation between the measured and estimated velocity fields. ℓ2, ℓ1, Huber, and hybrid loss functions are used to represent the discrepancy in the velocity field between the measurements and the predictions. A variety of algorithms are considered to solve the optimization problem with these loss functions and a performance comparison in terms of the quality and physical features of the recovered flow field is presented. The Huber loss function performed best as it remained robust to strong outliers in the measurements with its ℓ1 contribution and also ensured the uniqueness of the optimal solution with its ℓ2 contribution. Huber loss functions restrict the effect of outliers at the local measurement locations, thereby not affecting the quality of the high-dimensional reconstructed flow field. The hybrid loss function, a modified form of the continuous Huber loss function, also recovered the flow field with high accuracy. We demonstrate the performance of the data assimilation framework for the case of two-dimensional laminar flow around a circular cylinder at Re=100. We then extend the analysis to the case of two-dimensional laminar flow over a backward-facing step at Re=500, to further assess the efficacy and robustness of the data assimilation framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
moon发布了新的文献求助10
1秒前
华仔应助西子阳采纳,获得10
2秒前
song发布了新的文献求助10
3秒前
陈卓完成签到,获得积分10
4秒前
lixiangrui110发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
陈陈陈发布了新的文献求助10
6秒前
科研通AI5应助Murray采纳,获得10
7秒前
充电宝应助自信安荷采纳,获得10
7秒前
烟花应助ff采纳,获得10
7秒前
隐形曼青应助结实听莲采纳,获得10
8秒前
李健应助better采纳,获得10
8秒前
9秒前
朴素的啤酒完成签到,获得积分10
9秒前
9秒前
ding应助热闹的冬天采纳,获得10
9秒前
zhou发布了新的文献求助10
9秒前
9秒前
9秒前
非而者厚应助整齐碧玉采纳,获得10
9秒前
10秒前
zhhh发布了新的文献求助10
10秒前
研友_kng1r8完成签到,获得积分10
11秒前
南风发布了新的文献求助10
12秒前
12秒前
13秒前
桐桐应助陈陈陈采纳,获得10
14秒前
14秒前
西子阳发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
机灵柚子应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304