A semiautomated radiomics model based on multimodal dual-layer spectral CT for preoperative discrimination of the invasiveness of pulmonary ground-glass nodules

接收机工作特性 医学 无线电技术 腺癌 试验装置 人工智能 Lasso(编程语言) 放射科 逻辑回归 模式识别(心理学) 计算机科学 癌症 内科学 万维网
作者
Yue Wang,Hebing Chen,Yuyang Chen,Zhenguang Zhong,H. K. Huang,Peng Sun,Xiaohui Zhang,Yiliang Wan,Lingli Li,Tianhe Ye,Feng Pan,Lian Yang
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (5): 2505-2516 被引量:4
标识
DOI:10.21037/jtd-22-1605
摘要

In recent years, spectral computed tomography (CT) has shown excellent performance in the diagnosis of ground-glass nodules (GGNs) invasiveness; however, no research has combined spectral multimodal data and radiomics analysis for comprehensive analysis and exploration. Therefore, this study goes a step further on the basis of the previous research: to investigate the value of dual-layer spectral CT-based multimodal radiomics in accessing the invasiveness of lung adenocarcinoma manifesting as GGNs.In this study, 125 GGNs with pathologically confirmed preinvasive adenocarcinoma (PIA) and lung adenocarcinoma were divided into a training set (n=87) and a test set (n=38). Each lesion was automatically detected and segmented by the pre-trained neural networks, and 63 multimodal radiomic features were extracted. The least absolute shrinkage and selection operator (LASSO) was used to select target features, and a rad-score was constructed in the training set. Logistic regression analysis was conducted to establish a joint model which combined age, gender, and the rad-score. The diagnostic performance of the two models was compared by the receiver operating characteristic (ROC) curve and precision-recall curve. The difference between the two models was compared by the ROC analysis. The test set was used to evaluate the predictive performance and calibrate the model.Five radiomic features were selected. In the training and test sets, the area under the curve (AUC) of the radiomics model was 0.896 (95% CI: 0.830-0.962) and 0.881 (95% CI: 0.777-0.985) respectively, and the AUC of the joint model was 0.932 (95% CI: 0.882-0.982) and 0.887 (95% CI: 0.786-0.988) respectively. There was no significant difference in AUC between the radiomics model and joint model in the training and test sets (0.896 vs. 0.932, P=0.088; 0.881 vs. 0.887, P=0.480).Multimodal radiomics based on dual-layer spectral CT showed good predictive performance in differentiating the invasiveness of GGNs, which could assist in the decision of clinical treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DARKNESS发布了新的文献求助10
3秒前
4秒前
wangnn完成签到,获得积分10
5秒前
6秒前
大个应助YYX采纳,获得10
6秒前
慕辰完成签到,获得积分10
7秒前
DARKNESS完成签到,获得积分10
7秒前
陈同学完成签到,获得积分10
7秒前
鸽子汤完成签到 ,获得积分10
7秒前
聪慧雪糕发布了新的文献求助10
8秒前
11秒前
何时发布了新的文献求助10
13秒前
飞飞完成签到,获得积分10
13秒前
xt发布了新的文献求助10
14秒前
14秒前
佐zzz完成签到 ,获得积分10
16秒前
wer发布了新的文献求助10
18秒前
18秒前
zho发布了新的文献求助10
19秒前
Cactus应助溪泉采纳,获得10
19秒前
20秒前
完美世界应助牛牛采纳,获得10
21秒前
25秒前
ke发布了新的文献求助30
25秒前
中科路2020发布了新的文献求助10
25秒前
orixero应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
26秒前
打打应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
27秒前
领导范儿应助科研通管家采纳,获得100
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912974
求助须知:如何正确求助?哪些是违规求助? 3458322
关于积分的说明 10899687
捐赠科研通 3184620
什么是DOI,文献DOI怎么找? 1760344
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792730