Image sensing with multilayer nonlinear optical neural networks

计算机科学 人工智能 人工神经网络 非线性光学 非线性系统 生物光子学 光学 光电子学 材料科学 光子学 物理 量子力学
作者
Tianyu Wang,Mandar M. Sohoni,Logan G. Wright,Martin M. Stein,Shi-Yuan Ma,Tatsuhiro Onodera,Maxwell G. Anderson,Peter L. McMahon
出处
期刊:Nature Photonics [Nature Portfolio]
卷期号:17 (5): 408-415 被引量:93
标识
DOI:10.1038/s41566-023-01170-8
摘要

Optical imaging is commonly used for both scientific and technological applications across industry and academia. In image sensing, a measurement, such as of an object's position, is performed by computational analysis of a digitized image. An emerging image-sensing paradigm breaks this delineation between data collection and analysis by designing optical components to perform not imaging, but encoding. By optically encoding images into a compressed, low-dimensional latent space suitable for efficient post-analysis, these image sensors can operate with fewer pixels and fewer photons, allowing higher-throughput, lower-latency operation. Optical neural networks (ONNs) offer a platform for processing data in the analog, optical domain. ONN-based sensors have however been limited to linear processing, but nonlinearity is a prerequisite for depth, and multilayer NNs significantly outperform shallow NNs on many tasks. Here, we realize a multilayer ONN pre-processor for image sensing, using a commercial image intensifier as a parallel optoelectronic, optical-to-optical nonlinear activation function. We demonstrate that the nonlinear ONN pre-processor can achieve compression ratios of up to 800:1 while still enabling high accuracy across several representative computer-vision tasks, including machine-vision benchmarks, flow-cytometry image classification, and identification of objects in real scenes. In all cases we find that the ONN's nonlinearity and depth allowed it to outperform a purely linear ONN encoder. Although our experiments are specialized to ONN sensors for incoherent-light images, alternative ONN platforms should facilitate a range of ONN sensors. These ONN sensors may surpass conventional sensors by pre-processing optical information in spatial, temporal, and/or spectral dimensions, potentially with coherent and quantum qualities, all natively in the optical domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
hh完成签到,获得积分10
4秒前
Akim应助ling采纳,获得10
6秒前
美人鱼听不了超声波完成签到 ,获得积分10
7秒前
情怀应助to高坚果采纳,获得10
7秒前
8秒前
cstp完成签到,获得积分10
10秒前
lilac完成签到,获得积分10
10秒前
汉堡包应助lf采纳,获得10
10秒前
华仔应助yoesyte采纳,获得20
11秒前
笨笨中心发布了新的文献求助10
11秒前
小白发布了新的文献求助10
13秒前
李演员完成签到,获得积分10
13秒前
YJL完成签到,获得积分20
14秒前
14秒前
西门不二完成签到,获得积分10
15秒前
DSFSR发布了新的文献求助30
16秒前
小孩完成签到,获得积分10
17秒前
orixero应助是玥玥啊采纳,获得10
19秒前
丰富的冰棍完成签到,获得积分10
19秒前
夏天发布了新的文献求助10
20秒前
20秒前
多久上课完成签到 ,获得积分10
21秒前
小孩发布了新的文献求助10
22秒前
鱼生发布了新的文献求助10
25秒前
26秒前
在水一方应助飞先生采纳,获得10
29秒前
唐盼烟发布了新的文献求助10
32秒前
33秒前
34秒前
mz完成签到 ,获得积分10
34秒前
37秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
潺潺流水发布了新的文献求助10
38秒前
留胡子的火完成签到,获得积分10
39秒前
sukuyo发布了新的文献求助10
39秒前
sxcptbtptp完成签到,获得积分10
39秒前
40秒前
田様应助兰兰采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309