Joint-phase attention network for breast cancer segmentation in DCE-MRI

雅卡索引 乳腺癌 计算机科学 分割 人工智能 乳房磁振造影 磁共振成像 Sørensen–骰子系数 模式识别(心理学) 癌症 放射科 医学 图像分割 乳腺摄影术 内科学
作者
Rian Huang,Zeyan Xu,Yu Xie,Hong Wu,Zixian Li,Yanfen Cui,Yingwen Huo,Chu Han,Xiaotang Yang,Zaiyi Liu,Yi Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:224: 119962-119962 被引量:10
标识
DOI:10.1016/j.eswa.2023.119962
摘要

Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an important role in the screening and treatment evaluation of high-risk breast cancer. The segmentation of cancerous regions is an essential step for the comprehensive analysis of breast MRI. Nevertheless, automatic and robust segmentation is still very challenging because of the large differences of cancers in size, morphology, and intensity appearance. To alleviate these issues, we propose a simple yet effective two-stage approach, which simultaneously exploits pre- and post-contrast enhanced information to segment the breast cancer. In particular, we first offer a breast segmentation network to predict the breast region of interest (ROI) and therefore excluding confounding information from thorax region in the whole MRI scans. Moreover, inspired by the radiologists' examination routine which takes full advantage of the MRI sequences to make the diagnosis, we suggest a joint-phase attention network in order to mine both pre- and post-contrast representations for the segmentation of cancerous regions. The accuracy and generalizability of the proposed network is validated on our collected DCE-MRI dataset containing 550 subjects (with 748 biopsy-proven breast cancers) from 3 different centers (one as internal dataset and two as external datasets). The primary evaluation metrics are Dice similarity coefficient (Dice), Jaccard index (Jaccard), and average symmetric surface distance (ASSD). Our network consistently achieves satisfactory segmentation results, by generating an average Dice of 88.77%/82.77%/83.03%, Jaccard of 81.27%/71.89%/73.23%, and ASSD of 2.21/3.63/2.69, on one internal and two external datasets, respectively. Our method offers an effective cancer segmentation approach for the breast DCE-MRI examination. The code is publicly available at https://github.com/ryandok/JPA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Noel应助萨尔莫斯采纳,获得10
1秒前
乔心发布了新的文献求助10
2秒前
2秒前
4秒前
桐桐应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
阿浮完成签到,获得积分10
6秒前
hahaha完成签到,获得积分10
6秒前
7秒前
卓Celina完成签到,获得积分10
7秒前
驿寄梅花发布了新的文献求助10
8秒前
阿浮发布了新的文献求助10
9秒前
天天快乐应助CYY采纳,获得10
12秒前
念辞发布了新的文献求助10
12秒前
HEIKU应助Misea采纳,获得10
14秒前
任性雪糕完成签到 ,获得积分10
14秒前
852应助萨尔莫斯采纳,获得10
15秒前
共享精神应助狡猾肥鲶鱼采纳,获得30
15秒前
情怀应助净净子采纳,获得10
17秒前
魏你大爷完成签到 ,获得积分10
18秒前
丁丁完成签到,获得积分10
18秒前
在水一方应助平淡紫夏采纳,获得10
18秒前
我是老大应助驿寄梅花采纳,获得10
20秒前
缓慢的灵枫完成签到,获得积分10
24秒前
27秒前
驿寄梅花完成签到,获得积分10
32秒前
33秒前
34秒前
34秒前
柠檬精翠翠完成签到 ,获得积分10
37秒前
段段发布了新的文献求助10
39秒前
yuaaaann发布了新的文献求助10
40秒前
CYY发布了新的文献求助10
40秒前
41秒前
科研通AI5应助张继妖采纳,获得10
45秒前
yue发布了新的文献求助10
45秒前
46秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648