Multitask Linear Genetic Programming with Shared Individuals and its Application to Dynamic Job Shop Scheduling

计算机科学 遗传程序设计 人工智能 机器学习 线性规划 符号回归 多任务学习 遗传代表性 遗传算子 遗传算法 冗余(工程) 任务(项目管理) 基于群体的增量学习 算法 经济 管理 操作系统
作者
Zhixing Huang,Yi Mei,Fangfang Zhang,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:10
标识
DOI:10.1109/tevc.2023.3263871
摘要

Multitask genetic programming methods have been applied to various domains, such as classification, regression, and combinatorial optimization problems. Most existing multitask genetic programming methods are designed based on tree-based structures, which are not good at reusing building blocks since each sub-tree passes its outputs to only one parent. It may limit the design and performance of knowledge sharing in multitask optimization. Different from tree-based genetic programming, building blocks in linear genetic programming can be easily reused by more than one parent. Besides, existing multitask genetic programming methods always allocate each individual to a specific task and have to duplicate genetic materials from task to task in knowledge transfer, which is inefficient and often produces redundancy. Contrarily, it is natural for a linear genetic programming individual to produce multiple distinct outputs, which enables each linear genetic programming individual to solve multiple tasks simultaneously. With this in mind, we propose a new multitask linear genetic programming method that transfers knowledge via multi-output individuals (i.e., shared individuals among tasks). By integrating different solutions into one multi-output individual, the proposed method efficiently reuses common knowledge among tasks and maintains distinct behaviors for each task. The empirical results show that the proposed method has a significantly better test performance than state-of-the-art multitask genetic programming methods. Further analyses verify that the new knowledge transfer mechanism can adjust the transfer rate automatically and thus improves its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北譩完成签到,获得积分10
刚刚
NumbCn发布了新的文献求助10
1秒前
BINGBING应助钮秀采纳,获得30
1秒前
李爱国应助ardejiang采纳,获得10
1秒前
2秒前
2秒前
3秒前
北譩发布了新的文献求助10
3秒前
细心的紫丝完成签到,获得积分10
3秒前
bubu发布了新的文献求助30
4秒前
FashionBoy应助魏一一采纳,获得10
6秒前
深情安青应助还不错采纳,获得10
6秒前
ycy关闭了ycy文献求助
7秒前
1101592875发布了新的文献求助10
8秒前
8秒前
苗条凡完成签到 ,获得积分10
9秒前
归诚发布了新的文献求助10
9秒前
9秒前
汪浩完成签到,获得积分20
11秒前
yhtu完成签到,获得积分10
11秒前
合适猫咪发布了新的文献求助10
12秒前
桐桐应助科研小新在努力采纳,获得10
14秒前
迟迟发布了新的文献求助10
15秒前
彭佳乐发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
19秒前
徐强尼发布了新的文献求助50
20秒前
Shuo发布了新的文献求助10
21秒前
Yuan发布了新的文献求助10
22秒前
小马甲应助合适猫咪采纳,获得10
23秒前
24秒前
24秒前
庄庄完成签到,获得积分10
25秒前
yuiip完成签到 ,获得积分10
26秒前
超级南风发布了新的文献求助30
28秒前
寒冷铁身发布了新的文献求助10
30秒前
30秒前
33秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915771
求助须知:如何正确求助?哪些是违规求助? 3461325
关于积分的说明 10916228
捐赠科研通 3188215
什么是DOI,文献DOI怎么找? 1762491
邀请新用户注册赠送积分活动 852881
科研通“疑难数据库(出版商)”最低求助积分说明 793603