亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning the natural history of human disease with generative transformers

生成语法 变压器 自然史 自然(考古学) 计算机科学 人工智能 医学 历史 工程类 内科学 考古 电气工程 电压
作者
Artem Shmatko,Alexander W. Jung,Kumar Gaurav,Søren Brunak,Laust Hvas Mortensen,Ewan Birney,Tomas Fitzgerald,Moritz Gerstung
出处
期刊:Nature [Springer Nature]
被引量:4
标识
DOI:10.1038/s41586-025-09529-3
摘要

Abstract Decision-making in healthcare relies on understanding patients’ past and current health states to predict and, ultimately, change their future course 1–3 . Artificial intelligence (AI) methods promise to aid this task by learning patterns of disease progression from large corpora of health records 4,5 . However, their potential has not been fully investigated at scale. Here we modify the GPT 6 (generative pretrained transformer) architecture to model the progression and competing nature of human diseases. We train this model, Delphi-2M, on data from 0.4 million UK Biobank participants and validate it using external data from 1.9 million Danish individuals with no change in parameters. Delphi-2M predicts the rates of more than 1,000 diseases, conditional on each individual’s past disease history, with accuracy comparable to that of existing single-disease models. Delphi-2M’s generative nature also enables sampling of synthetic future health trajectories, providing meaningful estimates of potential disease burden for up to 20 years, and enabling the training of AI models that have never seen actual data. Explainable AI methods 7 provide insights into Delphi-2M’s predictions, revealing clusters of co-morbidities within and across disease chapters and their time-dependent consequences on future health, but also highlight biases learnt from training data. In summary, transformer-based models appear to be well suited for predictive and generative health-related tasks, are applicable to population-scale datasets and provide insights into temporal dependencies between disease events, potentially improving the understanding of personalized health risks and informing precision medicine approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王者归来完成签到,获得积分10
4秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得30
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
16秒前
深情安青应助默默襄采纳,获得10
17秒前
25秒前
39秒前
默默襄发布了新的文献求助10
44秒前
breeze完成签到,获得积分10
1分钟前
怪僻完成签到,获得积分10
1分钟前
1分钟前
小二郎应助llpj采纳,获得10
1分钟前
成就的笑南完成签到 ,获得积分10
1分钟前
1分钟前
读研霹雳完成签到 ,获得积分10
1分钟前
llpj发布了新的文献求助10
1分钟前
学习新思想完成签到,获得积分10
1分钟前
完美世界应助阿然采纳,获得10
1分钟前
浮游应助zy采纳,获得20
1分钟前
Jasper应助llpj采纳,获得10
1分钟前
1分钟前
爱吃大米饭完成签到 ,获得积分10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
青竹完成签到,获得积分10
2分钟前
冉亦完成签到,获得积分10
2分钟前
2分钟前
XXXXX完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
耶耶粘豆包完成签到,获得积分10
2分钟前
2分钟前
星星炒蛋发布了新的文献求助10
2分钟前
yhgz完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302033
求助须知:如何正确求助?哪些是违规求助? 4449329
关于积分的说明 13848232
捐赠科研通 4335497
什么是DOI,文献DOI怎么找? 2380331
邀请新用户注册赠送积分活动 1375325
关于科研通互助平台的介绍 1341472