Universal Core–Shell Nanowire Memristor Platform with Quasi‐2D Filament Confinement for Scalable Neuromorphic Applications

神经形态工程学 材料科学 记忆电阻器 纳米线 芯(光纤) 纳米技术 可扩展性 壳体(结构) 蛋白质丝 光电子学 人工神经网络 电子工程 计算机科学 复合材料 人工智能 工程类 数据库
作者
Enxiu Wu,Yue Wang,Shida Huo,Jing‐Bo Xu,Ming Sheng,Hongsheng Liu,Li Zhong,Gao Junfeng,Yuan Xie,Caofeng Pan
出处
期刊:Advanced Functional Materials [Wiley]
被引量:3
标识
DOI:10.1002/adfm.202518764
摘要

Abstract Memristors are central to the advancement of nano‐electronic and neuromorphic systems due to their fast‐switching speed, low power consumption, and compatibility with CMOS technology. However, the stochastic formation of conductive filaments (CFs) in filament‐based memristors remains a major obstacle, leading to significant variability in switching performance. Here, a novel memristor architecture that combines spatial confinement precision with fabrication simplicity is proposed; a core–shell silver nanowire structure, consisting of a highly conductive Ag core wrapped in a polyvinylpyrrolidone (PVP) shell. This 1D nanowire serves both as the active electrode and as a geometric scaffold that constrains CF growth within a quasi‐2D plane. The resulting device demonstrates excellent electrical performance, including a low threshold voltage (0.22 V), high switching uniformity (coefficient of variation <15%), and ultra‐low power consumption (≈400 pW). Molecular dynamics simulations reveal the spontaneous rupture behavior of CF and establish a correlation between filament dimensions and their temporal stability. Furthermore, the system emulates key nociceptor‐like functionalities—such as threshold triggering, relaxation recovery, and sensitization—highlighting its neuromorphic potential. This work establishes a versatile structural platform for precise nanoscale CF control using a structurally simple core–shell nanowire architecture, offering broad applicability across device formats for energy‐efficient, neuromorphic‐compatible memristive electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
刘志萍应助科研通管家采纳,获得10
刚刚
aldehyde应助科研通管家采纳,获得10
刚刚
刚刚
烟花应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
aldehyde应助科研通管家采纳,获得10
1秒前
自信山河发布了新的文献求助10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
菠菜应助科研通管家采纳,获得150
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
4秒前
不忘初心完成签到,获得积分10
4秒前
喜悦山柳完成签到,获得积分20
4秒前
小芳芳完成签到 ,获得积分10
4秒前
5秒前
orixero应助lalala采纳,获得10
5秒前
熊猫完成签到,获得积分10
5秒前
ZZ完成签到,获得积分10
5秒前
科研人才完成签到 ,获得积分10
5秒前
大模型应助哇哇哇采纳,获得10
6秒前
小王发布了新的文献求助10
6秒前
王迪发布了新的文献求助10
7秒前
Milesma完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662