双功能
材料科学
催化作用
电解
对偶(语法数字)
纳米技术
化学工程
物理化学
电极
有机化学
化学
电解质
文学类
工程类
艺术
作者
Nan Zhang,Wenyu Zhang,Yansheng Gong,Jun Jin,Huanwen Wang,Rui Wang,Ling Zhao,Beibei He
标识
DOI:10.1002/adfm.202515584
摘要
Abstract Replacing the sluggish oxygen evolution reaction (OER) with the partial oxidation of methane (POM) in solid oxide electrolysis cells (SOECs) offers a promising strategy to reduce energy consumption of the CO 2 reduction reaction (CO 2 RR), while converting methane into syngas. However, conventional perovskite electrodes exhibit limited bifunctional activity for both POM and CO 2 RR. Herein, a facile dual‐exsolution strategy is developed to fabricate RuFe@La 0.5 Sr 0.5 (Ru 0.25 Fe 0.75 ) 0.92 Nb 0.08 O 3‐δ /(Ru 0.25 Fe 0.75 ) 0.05 Gd 0.075 Ce 0.875 O 2‐δ (RuFe@LSFNR/RFGDC) symmetrical electrodes, enabling synergistic CH 4 ‐assisted CO 2 electrolysis. The tailored dual‐exsolved RuFe@LSFNR and RuFe@RFGDC interfaces exhibit significantly enhanced intrinsic bifunctional activity for both POM and CO 2 RR. At 800 °C, the energy consumption for CO production decreases markedly from 3.79 to 0.91 kWh m −3 . In situ characterizations and DFT calculations reveal that the in situ exsolved RuFe alloy nanoparticles facilitate CO 2 adsorption and CH 4 activation simultaneously, while AIMD simulations confirm heterostructure stability. This work highlights the feasibility of dual‐exsolution tailored interfaces for energy‐saving CO 2 electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI