Enhancing the Performance of Li/Na-Ion Batteries with Hexagonal Boron Nitride: Advances and Opportunities

六方氮化硼 材料科学 离子 氮化物 六方晶系 纳米技术 氮化硼 工程物理 化学工程 无机化学 结晶学 化学 石墨烯 工程类 有机化学 图层(电子)
作者
A.K. Das,Atin Pramanik,Mingrui Xu,Xinting Shuai,Abhijit Biswas,Róbert Vajtai,Pulickel M. Ajayan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (39): 34492-34513
标识
DOI:10.1021/acsnano.5c11425
摘要

Lithium-ion batteries (LIBs) have long dominated the energy storage landscape due to their high energy density and reliability. However, concerns over lithium resource scarcity and sustainability have accelerated the parallel search for alternative systems, with sodium-ion batteries (SIBs) emerging as promising candidates. To meet the performance benchmarks set by LIBs, the development of advanced materials is essential for improving the specific capacity and cycling stability of next-generation batteries. Hexagonal Boron Nitride (hBN), a structural analogue of graphene, has attracted attention for its exceptional optoelectronic properties, mechanical strength, thermal stability, and chemical inertness. Recent studies have explored the integration of hBN into various components of battery systems, including the anode, separator, and electrolyte, which have demonstrated enhancements in cyclic stability, high-temperature operation, and specific capacity. hBN-based ionogel electrolytes offer superior thermal stability, nonflammability, and high ionic conductivity, presenting a safer alternative to conventional liquid electrolytes. Similarly, hBN-functionalized separators provide improved thermal tolerance, better electrolyte wettability, and elevated electrochemical performance over traditional polypropylene (PP) separators. Moreover, hBN shows potential as an anode material in SIBs, with theoretical insights indicating favorable sodium adsorption and experimental evidence supporting reversible sodiation/desodiation processes. This review summarizes the advances in harnessing hBN for high-performance energy storage, positioning it as a multifunctional material bridging the performance gap between LIBs and SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助10
2秒前
科研通AI6应助安详靖柏采纳,获得10
2秒前
3秒前
SYxin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
顺利毕业完成签到 ,获得积分10
5秒前
张张崽完成签到,获得积分20
5秒前
lizeji完成签到,获得积分10
5秒前
5秒前
6秒前
fosca发布了新的文献求助10
6秒前
华仔应助当晚星散落采纳,获得10
6秒前
大气夜山完成签到 ,获得积分10
6秒前
有故无陨完成签到,获得积分10
7秒前
8秒前
9秒前
西米露完成签到 ,获得积分10
9秒前
eric888应助水煮菜采纳,获得60
9秒前
10秒前
科研通AI6应助可乐拉环采纳,获得10
11秒前
徐cc完成签到 ,获得积分10
11秒前
顿手把其发布了新的文献求助10
11秒前
小潘完成签到,获得积分10
12秒前
关关过应助yy采纳,获得30
13秒前
14秒前
14秒前
虞不见王完成签到 ,获得积分10
14秒前
Hcollide发布了新的文献求助10
14秒前
科研通AI6应助超帅的冷菱采纳,获得10
15秒前
SJJ完成签到,获得积分0
17秒前
qqq完成签到,获得积分10
18秒前
耀学菜菜发布了新的文献求助10
18秒前
wheatttty完成签到 ,获得积分10
18秒前
19秒前
OVOV完成签到,获得积分10
20秒前
细腻戒指完成签到,获得积分10
20秒前
21秒前
jason完成签到,获得积分10
22秒前
Hcollide完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652973
求助须知:如何正确求助?哪些是违规求助? 4788997
关于积分的说明 15062459
捐赠科研通 4811632
什么是DOI,文献DOI怎么找? 2573955
邀请新用户注册赠送积分活动 1529728
关于科研通互助平台的介绍 1488403