Force‐Induced Selective Carbon‐Carbon Bond Cleavage in Mechanoresponsive Topochemical Polymers

材料科学 聚合物 键裂 均分解 脆性 碳纤维 纳米技术 劈开 复合材料 化学工程 有机化学 化学 复合数 催化作用 激进的 工程类
作者
Zitang Wei,Hanul Kim,Nazmul Haque,Qixuan Hu,Ke Ma,Kang Wang,Shuchen Zhang,Xuyi Luo,Yoon Ho Lee,Siyoung Q. Choi,Chelsea S. Davis,Brett M. Savoie,Letian Dou
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202510482
摘要

Abstract Mechanoresponsive polymeric materials that respond to mechanical deformation are highly valued for their potential in sensors, degradation studies, and optoelectronics. However, direct visualization and detection of these responses remain significant obstacles. In this study, novel mechanoresponsive polybiidenedionediyl (PBIT) derivative topochemical polymers are developed that depolymerize under mechanical forces, exhibiting a distinct and irreversible color change in response to grinding, milling, and compression. This color change is attributed to the alteration of polymer backbone conjugation during elongated Carbon‐Carbon (C─C) single bond cleavage. Quantum chemical pulling simulations on PBIT polymers reveals a force range of 4.3–5.0 nN associated with the selective cleavage of elongated C─C single bonds. This force range is comparable to that observed for typical homolytic mechanophores, supporting the mechanistic interpretation of homolytic bond scission under mechanical stress. C─C bond cleavage kinetic studies of PBIT under compression indicates that strong interchain interactions significantly increase the pressure needed to cleave the elongated C─C bonds. Additionally, PBIT polymer thin films are composited with polydimethylsiloxane to create free‐standing and robust thin films, which can serve as ink‐free and rewritable paper for writing and stress visualization applications. This advancement opens new possibilities for utilizing crystalline and brittle topochemical polymers in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓶子君152完成签到,获得积分10
刚刚
任性舞蹈发布了新的文献求助10
刚刚
狂野元枫完成签到 ,获得积分10
刚刚
刚刚
沉静的煎蛋完成签到,获得积分10
2秒前
cdercder应助机智橘子采纳,获得20
2秒前
回来完成签到,获得积分10
2秒前
自信的寒天完成签到,获得积分10
3秒前
4秒前
4秒前
znn完成签到,获得积分10
5秒前
dddd完成签到,获得积分10
5秒前
诚心的哈密瓜完成签到 ,获得积分10
5秒前
Ju完成签到 ,获得积分10
6秒前
罗海艳发布了新的文献求助10
6秒前
香蕉觅云应助酷酷衣采纳,获得10
6秒前
小兔叽完成签到 ,获得积分10
6秒前
Ava应助纳米果采纳,获得10
7秒前
7秒前
led完成签到,获得积分10
7秒前
7秒前
Hello应助西哈哈采纳,获得10
7秒前
聪慧的以彤完成签到,获得积分10
7秒前
摸鱼仙人完成签到,获得积分10
8秒前
8秒前
kyt完成签到,获得积分10
8秒前
淳于安筠完成签到,获得积分10
8秒前
jia发布了新的文献求助10
9秒前
9秒前
11发布了新的文献求助10
9秒前
10秒前
10秒前
领导范儿应助Lilies采纳,获得10
10秒前
10秒前
Akim应助wxr采纳,获得10
11秒前
严不平完成签到,获得积分10
12秒前
sincerity完成签到,获得积分10
12秒前
cdercder应助jia采纳,获得10
12秒前
zcz发布了新的文献求助10
12秒前
yu777完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392