核心
电子
原子物理学
电子转移
物理
核物理学
材料科学
心理学
化学
物理化学
神经科学
作者
Krzysztof M. Graczyk,Beata E. Kowal,Artur M. Ankowski,Rwik Dharmapal Banerjee,J. L. Bonilla,Hemant Prasad,J. T. Sobczyk
摘要
Transfer learning allows a deep neural network (DNN) trained on one type of data to be adapted for new problems with limited information. We propose to use the transfer learning technique in physics. The DNN learns the details of one process, and after fine-tuning, it makes predictions for related processes. We consider the DNNs, trained on inclusive electron-carbon scattering data, and show that after fine-tuning, they accurately predict cross sections for electron interactions with nuclear targets ranging from helium-3 to iron.
科研通智能强力驱动
Strongly Powered by AbleSci AI