亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of an MRI‐Based Comprehensive Model Fusing Clinical, Habitat Radiomics, and Deep Learning Models for Preoperative Identification of Tumor Deposits in Rectal Cancer

医学 组内相关 无线电技术 结直肠癌 逻辑回归 磁共振成像 阶段(地层学) 放射科 癌症 人工智能 内科学 肿瘤科 计算机科学 古生物学 心理测量学 生物 临床心理学
作者
Xiang Li,Ying Zhu,Yaru Wei,Zhongwei Chen,Zhishan Wang,Yanyan Li,Xuebo Jin,Ziyi Chen,Jiayi Zhan,Xiaobo Chen,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.70075
摘要

Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored. To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer. Retrospective. Surgically diagnosed rectal cancer patients (n = 635): training (n = 259) and internal validation (n = 112) from center 1; center 2 (n = 264) for external validation. 1.5/3T, T2-weighted image (T2WI) using fast spin echo sequence. Four models (clinical, habitat radiomics, DL, fusion) were developed for preoperative TDs diagnosis (184 TDs positive). T2WI was segmented using nnUNet, and habitat radiomics and DL features were extracted separately. Clinical parameters were analyzed independently. The fusion model integrated selected features from all three approaches through two-stage selection. Disease-free survival (DFS) analysis was used to assess the models' prognostic performance. Intraclass correlation coefficient (ICC), logistic regression, Mann-Whitney U tests, Chi-squared tests, LASSO, area under the curve (AUC), decision curve analysis (DCA), calibration curves, Kaplan-Meier analysis. The AUCs for the four models ranged from 0.778 to 0.930 in the training set. In the internal validation cohort, the AUCs of clinical, habitat radiomics, DL, and fusion models were 0.785 (95% CI 0.767-0.803), 0.827 (95% CI 0.809-0.845), 0.828 (95% CI 0.815-0.841), and 0.862 (95% CI 0.828-0.896), respectively. In the external validation cohort, the corresponding AUCs were 0.711 (95% CI 0.599-0.644), 0.817 (95% CI 0.801-0.833), 0.759 (95% CI 0.743-0.773), and 0.820 (95% CI 0.770-0.860), respectively. TDs-positive patients predicted by the fusion model had significantly poorer DFS (median: 30.7 months) than TDs-negative patients (median follow-up period: 39.9 months). A fusion model may identify TDs in rectal cancer and could allow to stratify DFS risk. 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴昕昕发布了新的文献求助10
17秒前
mama完成签到 ,获得积分10
31秒前
XueXiTong完成签到,获得积分10
33秒前
山是山三十三完成签到 ,获得积分10
46秒前
mark163完成签到,获得积分10
51秒前
CipherSage应助药石无医采纳,获得10
55秒前
国色不染尘完成签到,获得积分10
56秒前
1分钟前
药石无医发布了新的文献求助10
1分钟前
1分钟前
搜集达人应助药石无医采纳,获得10
1分钟前
1分钟前
药石无医发布了新的文献求助10
1分钟前
OCDer完成签到,获得积分0
1分钟前
小二郎应助药石无医采纳,获得10
1分钟前
jim完成签到 ,获得积分10
2分钟前
Unlisted完成签到,获得积分20
2分钟前
Dr_Zhan完成签到 ,获得积分10
2分钟前
刘厚麟应助科研通管家采纳,获得10
2分钟前
2分钟前
药石无医发布了新的文献求助10
2分钟前
fengfenghao完成签到,获得积分10
2分钟前
2分钟前
汉堡包应助安蓝采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
安蓝发布了新的文献求助10
3分钟前
斯文败类应助药石无医采纳,获得10
3分钟前
3分钟前
研友_LX0QOL发布了新的文献求助10
3分钟前
4分钟前
药石无医发布了新的文献求助10
4分钟前
伏城完成签到 ,获得积分10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
丘比特应助惑梦梦采纳,获得10
4分钟前
翼德救我i完成签到 ,获得积分10
4分钟前
Nick_YFWS完成签到,获得积分10
5分钟前
5分钟前
老实的火发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Proposals That Work: A Guide for Planning Dissertations and Grant Proposals 888
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4705943
求助须知:如何正确求助?哪些是违规求助? 4072317
关于积分的说明 12592444
捐赠科研通 3773372
什么是DOI,文献DOI怎么找? 2084450
邀请新用户注册赠送积分活动 1111517
科研通“疑难数据库(出版商)”最低求助积分说明 989258