降级(电信)
析氧
氧气
机制(生物学)
反应机理
化学工程
材料科学
化学
氧还原反应
相(物质)
纳米技术
化学物理
物理化学
催化作用
电化学
电极
计算机科学
物理
有机化学
工程类
电信
量子力学
生物化学
作者
Cheng Han,Yao Lv,Xuan Tang,Sixie Zhang,Yongjun Jiang,Zhiyi Lu,Sheng Dai
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-07-10
标识
DOI:10.1021/acs.nanolett.5c02869
摘要
Metal-organic frameworks (MOFs) like ZIF-67 are promising electrocatalysts due to their tunable structures and porosity, but their instability in aqueous electrolytes requires a deeper understanding. This study investigates the structural evolution and degradation mechanism of ZIF-67 during the oxygen evolution reaction (OER) in alkaline media. Using atomic-resolution identical-location transmission electron microscopy, we reveal its transformation pathway: ZIF-67 first converts to Co(OH)2, then progressively evolves into catalytically active CoOOH and inactive CoO species, ultimately establishing a dynamic three-phase equilibrium under operational conditions. Prolonged cycling drives the irreversible conversion of Co(OH)2 to CoO, depleting the Co(OH)2 reservoir required to sustain the active CoOOH phase via equilibrium dynamics. By lowering the reaction temperature (e.g., to 0 °C), Co(OH)2 preservation improves stability, reducing overpotential increases after 5000 cycles to just 9 mV (10 mA cm-2) and 15 mV (100 mA cm-2), outperforming room-temperature performance. These insights highlight phase equilibrium regulation as a key strategy for enhancing the MOF-derived catalyst durability.
科研通智能强力驱动
Strongly Powered by AbleSci AI