Analysis of causal effects of 137Cs deposition on 137Cs concentrations in trees after the Fukushima accident using machine learning

柳杉 环境科学 洋甘菊 赤松 生态学 粳稻 生物 植物 园艺
作者
Igor Shuryak
出处
期刊:Journal of Environmental Radioactivity [Elsevier BV]
卷期号:264: 107205-107205 被引量:2
标识
DOI:10.1016/j.jenvrad.2023.107205
摘要

Radioactive contamination of forests by long-lived radionuclides from nuclear accidents such as Chernobyl and Fukushima continues to be studied and quantitatively modeled. Whereas traditional statistical and machine learning (ML) techniques generate predictions by focusing on correlations between variables, quantification of causal effects of radioactivity deposition levels on contamination of plant tissues represents a more fundamental and relevant research goal. Modeling of cause-and-effect relationships is advantageous over standard predictive modeling, particularly by improving the generalizability of results to other situations, where the distributions of variables, including potential confounders, differ from those in the training data. Here we used the state-of-the-art causal forest (CF) algorithm to quantify the causal effect of 137Cs land contamination after the Fukushima accident on 137Cs activity concentrations in the wood of four common Japanese forest tree species: Hinoki cypress (Chamaecyparis obtusa), konara oak (Quercus serrata), red pine (Pinus densiflora), and Sugi cedar (Cryptomeria japonica). We estimated the average causal effect for the population, quantified how it was influenced by other environmental variables, and produced effect estimates at the individual level. The estimated causal effect was quite robust to various refutation methods, and was negatively influenced by high mean annual precipitation, elevation, and time after the accident. Wood subtype (e.g. sapwood, heartwood) and tree species made smaller contributions to the causal effect. We believe that causal ML techniques have promising potential in radiation ecology and can usefully expand the toolkit of modeling approaches available to researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好完成签到,获得积分10
刚刚
芝士猕猴桃完成签到,获得积分10
1秒前
李爱国应助yfy采纳,获得10
2秒前
4秒前
猪猪hero应助端庄的冰之采纳,获得10
4秒前
wanci应助Helium采纳,获得10
5秒前
7秒前
天天快乐应助忧伤的凝海采纳,获得10
10秒前
江北小赵完成签到,获得积分10
13秒前
jianhan发布了新的文献求助10
13秒前
慕青应助陈可欣采纳,获得10
15秒前
我为科研狂完成签到,获得积分10
16秒前
16秒前
夕阳给夕阳的求助进行了留言
16秒前
18秒前
20秒前
22秒前
xufund完成签到,获得积分0
22秒前
义气的访波完成签到,获得积分10
22秒前
23秒前
SciGPT应助52pry采纳,获得10
26秒前
27秒前
xufund发布了新的文献求助10
28秒前
29秒前
31秒前
露亮完成签到,获得积分10
32秒前
fr应助兴奋采梦采纳,获得10
33秒前
jam发布了新的文献求助30
34秒前
露亮发布了新的文献求助10
34秒前
桐桐应助whole采纳,获得10
34秒前
35秒前
36秒前
大师现在完成签到,获得积分10
37秒前
fr应助可靠的映阳采纳,获得10
37秒前
37秒前
39秒前
AQ发布了新的文献求助10
39秒前
Jasper应助dandan采纳,获得10
40秒前
Helium发布了新的文献求助10
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780495
求助须知:如何正确求助?哪些是违规求助? 3325980
关于积分的说明 10224964
捐赠科研通 3041047
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667