Physics-based neural network as constitutive law for finite element analysis of sintering

本构方程 有限元法 陶瓷 人工神经网络 材料科学 失真(音乐) 烧结 变形(气象学) 非线性系统 过程(计算) 机械工程 计算机科学 人工智能 结构工程 复合材料 工程类 物理 操作系统 放大器 量子力学 光电子学 CMOS芯片
作者
Ran He,Venkat Ghantasala,Peter Polák,Baber Saleem,Jingzhe Pan
出处
期刊:Ceramics International [Elsevier]
卷期号:50 (19): 37291-37299 被引量:11
标识
DOI:10.1016/j.ceramint.2024.02.333
摘要

In the sintering of advanced ceramics, a digital twin consisted of a finite element model can predict the final shape and microstructure of a sintered ceramic. However, to minimise uncertainties, it is essential to continually update the mechanical properties in the digital twin using data collected from the manufacturing process. One promising approach for achieving this is through artificial neural networks (ANN). This study introduces a machine learning strategy to update the constitutive behaviour of advanced ceramics in finite element analysis of sintering deformation. A major challenge in implementing machine learning in material processing is the huge amount of data required by the training and validation of an ANN, which are often unavailable or incomplete in a real manufacturing process. This study demonstrates that the data requirement can be reduced by employing a two-step training technique. Firstly, the ANN is trained using a nonlinear constitutive law, which describes a general relationship between the strain rates and stresses. Subsequently, the weights and bias of the ANN are transferred for the retraining using limited experimental data for an actual ceramic. It is shown that such approach can successfully capture the nonlinear constitutive behaviour of fine-grained alumina without demanding for large amount of experimental data. A case study is provided, highlighting the feasibility of implementing the ANN in a commercial finite element package, to replace the constitutive law and predict the shrinkage and distortion of a sintering part. In particular, the sintered dumb-bell shape part, simulated using the retrained ANN, showed grain size and relative density that markedly different from those using the nonlinear constitutive law. It is important to note that the proposed methodology is generic and can be used to create ANNs to replace constitutive laws in finite element analysis in digital twins for a wide range of other engineering processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的诗槐完成签到,获得积分0
刚刚
水水水发布了新的文献求助10
刚刚
1秒前
2秒前
nininnn完成签到,获得积分10
3秒前
3秒前
orixero应助12334采纳,获得10
3秒前
4秒前
思源应助CBP采纳,获得10
7秒前
肥牛芋泥泥完成签到,获得积分10
8秒前
CodeCraft应助王一采纳,获得10
9秒前
落后的翠风完成签到,获得积分20
9秒前
9秒前
Ray完成签到,获得积分10
10秒前
呆萌新之完成签到,获得积分10
10秒前
HtheJ完成签到,获得积分10
10秒前
11秒前
大个应助聪慧的雪糕采纳,获得10
14秒前
14秒前
ding应助xiaohe采纳,获得10
14秒前
15秒前
15秒前
15秒前
Kayla发布了新的文献求助10
15秒前
15秒前
clyde凌丫完成签到 ,获得积分10
16秒前
王一完成签到,获得积分20
17秒前
18秒前
王一发布了新的文献求助10
19秒前
bu完成签到,获得积分10
19秒前
lele完成签到,获得积分10
20秒前
包包完成签到,获得积分10
20秒前
江大桥关注了科研通微信公众号
20秒前
CodeCraft应助eleanor采纳,获得30
21秒前
12334发布了新的文献求助10
22秒前
上官若男应助麦田稻草人采纳,获得10
22秒前
Hello应助Xihu采纳,获得10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556401
求助须知:如何正确求助?哪些是违规求助? 4640903
关于积分的说明 14663795
捐赠科研通 4582989
什么是DOI,文献DOI怎么找? 2513798
邀请新用户注册赠送积分活动 1488319
关于科研通互助平台的介绍 1459064