A novel approach for bearings multiclass fault diagnosis fusing multiscale deep convolution and hybrid attention networks

过度拟合 过采样 计算机科学 欠采样 模式识别(心理学) 人工智能 断层(地质) 噪音(视频) 方位(导航) 特征提取 自编码 特征(语言学) 数据挖掘 深度学习 人工神经网络 计算机网络 语言学 哲学 带宽(计算) 地震学 图像(数学) 地质学
作者
Fule Li,Xuelong Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045017-045017
标识
DOI:10.1088/1361-6501/ad1c47
摘要

Abstract Insufficient and imbalanced samples pose a significant challenge in bearing fault diagnosis, leading to low diagnosis accuracy. However, the fault characteristics of vibration signals are weak and difficult to extract when faults occur in the early stage. This paper proposes an effective fault diagnosis method that addresses small and imbalanced sample problems under noise interference. First, the number of faulty samples in the form of 1D signals is increased mainly by the sliding split sampling method. The preprocessed data are used to create 2D time–frequency diagrams using the continuous wavelet transform (CWT), which can extract effective features to improve the data quality. Subsequently, the minority samples are oversampled by combining synthetic minority oversampling technique to realize time–frequency conversion augmented oversampling. Moreover, the clustering method and random undersampling method are introduced to prevent the overfitting and underfitting problems respectively. Then, we propose a hybrid attention mechanism to enhance the extraction of effective feature information. This combination, integrating CWT with a multicolumn modified deep residual network, effectively extracts fault characteristics and suppresses noise effects. The experimental results demonstrate the effectiveness of the proposed method by comparison with other advanced methods using two case studies of bearing datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
号行天下发布了新的文献求助20
1秒前
星空_完成签到 ,获得积分10
1秒前
水知寒完成签到,获得积分10
2秒前
2秒前
扒开皮皮发布了新的文献求助10
3秒前
小二郎应助YoungLee采纳,获得10
4秒前
甜橙发布了新的文献求助10
5秒前
zho发布了新的文献求助10
6秒前
Amazing完成签到 ,获得积分10
6秒前
Eternitymaria完成签到,获得积分10
6秒前
活力的寻云完成签到 ,获得积分10
7秒前
8秒前
8秒前
liumou完成签到,获得积分10
8秒前
香蕉觅云应助如意以晴采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
加菲丰丰应助科研通管家采纳,获得30
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
梁婷发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
迅速的八宝粥完成签到 ,获得积分20
14秒前
15秒前
TheGala发布了新的文献求助10
16秒前
飞宇发布了新的文献求助10
16秒前
成就的水之完成签到,获得积分10
17秒前
黄医生完成签到,获得积分10
17秒前
lsx发布了新的文献求助10
18秒前
号行天下完成签到,获得积分20
19秒前
21秒前
22秒前
彩色靖儿发布了新的文献求助10
28秒前
28秒前
FL完成签到 ,获得积分10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons 200
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123