Prognostic model to predict the incidence of radiographic knee osteoarthritis

医学 骨关节炎 队列 接收机工作特性 入射(几何) 内科学 曲线下面积 沃马克 列线图 无症状的 体质指数 物理疗法 病理 光学 物理 替代医学
作者
Rocío Paz-González,Vanesa Balboa‐Barreiro,L. Lourido,V. Calamia,Patricia Fernández‐Puente,N. Oreiro,Cristina Ruíz‐Romero,Francisco J. Blanco
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:83 (5): 661-668 被引量:6
标识
DOI:10.1136/ard-2023-225090
摘要

Objective Early diagnosis of knee osteoarthritis (KOA) in asymptomatic stages is essential for the timely management of patients using preventative strategies. We develop and validate a prognostic model useful for predicting the incidence of radiographic KOA (rKOA) in non-radiographic osteoarthritic subjects and stratify individuals at high risk of developing the disease. Methods Subjects without radiographic signs of KOA according to the Kellgren and Lawrence (KL) classification scale (KL=0 in both knees) were enrolled in the OA initiative (OAI) cohort and the Prospective Cohort of A Coruña (PROCOAC). Prognostic models were developed to predict rKOA incidence during a 96-month follow-up period among OAI participants based on clinical variables and serum levels of the candidate protein biomarkers APOA1, APOA4, ZA2G and A2AP. The predictive capability of the biomarkers was assessed based on area under the curve (AUC), and internal validation was performed to correct for overfitting. A nomogram was plotted based on the regression parameters. Model performance was externally validated in the PROCOAC. Results 282 participants from the OAI were included in the development dataset. The model built with demographic, anthropometric and clinical data (age, sex, body mass index and WOMAC pain score) showed an AUC=0.702 for predicting rKOA incidence during the follow-up. The inclusion of ZA2G, A2AP and APOA1 data significantly improved the model’s sensitivity and predictive performance (AUC=0.831). The simplest model, including only clinical covariates and ZA2G and A2AP serum levels, achieved an AUC=0.826. Both models were internally cross-validated. Predictive performance was externally validated in an independent dataset of 100 individuals from the PROCOAC (AUC=0.713). Conclusion A novel prognostic model based on common clinical variables and protein biomarkers was developed and externally validated to predict rKOA incidence over a 96-month period in individuals without any radiographic signs of disease. The resulting nomogram is a useful tool for stratifying high-risk populations and could potentially lead to personalised medicine strategies for treating OA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MRD完成签到,获得积分10
2秒前
不要说话1完成签到,获得积分10
3秒前
神勇语堂完成签到 ,获得积分10
3秒前
所所应助俊卿采纳,获得10
4秒前
天天快乐应助曾泳钧采纳,获得10
6秒前
Alan完成签到,获得积分10
8秒前
上官若男应助霜序采纳,获得10
8秒前
游艺完成签到 ,获得积分10
8秒前
发嗲的鸡完成签到 ,获得积分10
8秒前
8秒前
8秒前
腾飞发布了新的文献求助10
9秒前
kk完成签到 ,获得积分10
10秒前
小扁大王完成签到 ,获得积分10
10秒前
12秒前
13秒前
浮游应助努努酱采纳,获得10
14秒前
serenity711完成签到 ,获得积分10
14秒前
xksy完成签到,获得积分10
15秒前
16秒前
doomedQL完成签到,获得积分10
16秒前
17秒前
world完成签到,获得积分10
17秒前
vetXue发布了新的文献求助20
18秒前
Luna完成签到 ,获得积分10
19秒前
欢喜冷菱完成签到,获得积分10
20秒前
默默白开水完成签到 ,获得积分10
20秒前
平凡中的限量版完成签到,获得积分10
21秒前
曾泳钧发布了新的文献求助10
21秒前
21秒前
包谷冬完成签到 ,获得积分0
21秒前
曾泳钧完成签到,获得积分10
26秒前
在水一方应助明天见采纳,获得10
26秒前
千暮完成签到,获得积分10
27秒前
guozizi发布了新的文献求助10
27秒前
fei菲飞发布了新的文献求助10
28秒前
初次见面完成签到,获得积分10
29秒前
王若琪完成签到 ,获得积分10
30秒前
大模型应助Danboard采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304885
求助须知:如何正确求助?哪些是违规求助? 4451091
关于积分的说明 13850915
捐赠科研通 4338444
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376942
关于科研通互助平台的介绍 1344399