Optical and SAR Image Fusion Based on Complementary Feature Decomposition and Visual Saliency Features

人工智能 计算机科学 图像融合 计算机视觉 合成孔径雷达 特征(语言学) 融合 分解 模式识别(心理学) 特征提取 图像(数学) 遥感 地质学 生物 生态学 哲学 语言学
作者
Yuanxin Ye,Jiacheng Zhang,Liang Zhou,Jinjin Li,Xiaoyue Ren,Jianwei Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2024.3366519
摘要

With the expansion of optical and SAR image fusion application scenarios, it is necessary to integrate their information in land classification, feature recognition, and target tracking. Current methods focus excessively on integrating multimodal feature information to enhance the information richness of the fused images, whereas neglecting the highly corrupted visual perception of the fused results by modal differences and SAR speckle noise. To address that, this paper proposes a novel optical and SAR image fusion framework named Visual Saliency Features Fusion (VSFF), which is based on the extraction and balancing of significant complementary features of optical and SAR images. Firstly, we propose a decomposition algorithm of complementary features to divide the image into main structure features and detail texture features. Then, for the fusion of main structure features, we reconstruct the visual saliency features maps of the pixel and structure that contain significant information from optical and SAR images, and input them into a total variation constraint model to compute the fusion result and achieve the optimal information transfer. Meanwhile, we construct a new feature descriptor based on the Gabor wavelet, that separates meaningful detail texture features from residual noise and selectively preserves features that can improve the interpretability of fusion result. In a comparative analysis with seven state-of-the-art fusion algorithms, VSFF achieved better results in qualitative and quantitative evaluations, and our fused images have a clear and appropriate visual perception. The source code is publicly available at https://github.com/yeyuanxin110/VSFF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mars_1108完成签到,获得积分10
1秒前
2秒前
3秒前
6秒前
7秒前
加油搬砖发布了新的文献求助10
9秒前
9秒前
小明完成签到,获得积分10
9秒前
jgpiao发布了新的文献求助10
10秒前
11秒前
遇见完成签到,获得积分10
12秒前
13秒前
zzzzzzzzzzzzb完成签到,获得积分10
16秒前
17秒前
桐桐应助jgpiao采纳,获得10
17秒前
zx完成签到,获得积分10
17秒前
18秒前
21秒前
22秒前
24秒前
24秒前
24秒前
25秒前
充电宝应助nana采纳,获得10
25秒前
liuweiwei发布了新的文献求助10
27秒前
Thea发布了新的文献求助10
28秒前
28秒前
28秒前
29秒前
善学以致用应助Bill采纳,获得10
29秒前
大模型应助戌塔采纳,获得30
31秒前
舟舟完成签到,获得积分10
33秒前
soapffz完成签到,获得积分10
34秒前
35秒前
35秒前
香蕉觅云应助李春晓采纳,获得10
37秒前
超帅的薇姐完成签到,获得积分10
37秒前
39秒前
健忘芷珊发布了新的文献求助10
40秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084113
求助须知:如何正确求助?哪些是违规求助? 3623230
关于积分的说明 11493787
捐赠科研通 3337754
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903663
科研通“疑难数据库(出版商)”最低求助积分说明 821776