Optical and SAR Image Fusion Based on Complementary Feature Decomposition and Visual Saliency Features

人工智能 计算机科学 图像融合 计算机视觉 合成孔径雷达 特征(语言学) 融合 分解 模式识别(心理学) 特征提取 图像(数学) 遥感 地质学 生物 生态学 哲学 语言学
作者
Yuanxin Ye,Jiacheng Zhang,Liang Zhou,Jinjin Li,Xiaoyue Ren,Jianwei Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:34
标识
DOI:10.1109/tgrs.2024.3366519
摘要

With the expansion of optical and SAR image fusion application scenarios, it is necessary to integrate their information in land classification, feature recognition, and target tracking. Current methods focus excessively on integrating multimodal feature information to enhance the information richness of the fused images, whereas neglecting the highly corrupted visual perception of the fused results by modal differences and SAR speckle noise. To address that, this paper proposes a novel optical and SAR image fusion framework named Visual Saliency Features Fusion (VSFF), which is based on the extraction and balancing of significant complementary features of optical and SAR images. Firstly, we propose a decomposition algorithm of complementary features to divide the image into main structure features and detail texture features. Then, for the fusion of main structure features, we reconstruct the visual saliency features maps of the pixel and structure that contain significant information from optical and SAR images, and input them into a total variation constraint model to compute the fusion result and achieve the optimal information transfer. Meanwhile, we construct a new feature descriptor based on the Gabor wavelet, that separates meaningful detail texture features from residual noise and selectively preserves features that can improve the interpretability of fusion result. In a comparative analysis with seven state-of-the-art fusion algorithms, VSFF achieved better results in qualitative and quantitative evaluations, and our fused images have a clear and appropriate visual perception. The source code is publicly available at https://github.com/yeyuanxin110/VSFF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
missxxx完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
Amelie完成签到,获得积分20
4秒前
SAN发布了新的文献求助10
5秒前
隐形曼青应助fangtong采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
hopen发布了新的文献求助10
6秒前
Morssax完成签到,获得积分10
6秒前
繁荣的夏岚完成签到 ,获得积分10
7秒前
圆圆完成签到 ,获得积分10
8秒前
ziyue发布了新的文献求助10
9秒前
10秒前
乐观兔子发布了新的文献求助10
10秒前
12秒前
SciGPT应助儒雅的夏山采纳,获得10
14秒前
Amelie发布了新的文献求助10
15秒前
15秒前
Twonej应助jack_kunn采纳,获得30
16秒前
16秒前
star发布了新的文献求助10
18秒前
唐唐完成签到 ,获得积分10
19秒前
19秒前
李健的小迷弟应助kaxif采纳,获得10
19秒前
20秒前
21秒前
乐观兔子完成签到,获得积分10
21秒前
YYYCCC发布了新的文献求助30
24秒前
24秒前
Lucy发布了新的文献求助80
26秒前
27秒前
Breeze完成签到,获得积分10
28秒前
28秒前
wanci应助SAN采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638636
求助须知:如何正确求助?哪些是违规求助? 4746155
关于积分的说明 15003459
捐赠科研通 4796649
什么是DOI,文献DOI怎么找? 2562919
邀请新用户注册赠送积分活动 1522153
关于科研通互助平台的介绍 1481946