Physics-informed ConvNet: Learning physical field from a shallow neural network

人工神经网络 物理 领域(数学) 人工智能 统计物理学 计算机科学 数学 纯数学
作者
Pengpeng Shi,Zhi Zeng,Tianshou Liang
出处
期刊:Communications in Nonlinear Science and Numerical Simulation [Elsevier BV]
卷期号:132: 107911-107911 被引量:18
标识
DOI:10.1016/j.cnsns.2024.107911
摘要

We present a new approach for solving nonlinear partial differential equation (PDE) on regular or irregular domains based on physics-informed ConvNet, which we call the PICN. The network structure consists of three parts: 1) a convolutional neural network for physical field generation, 2) a pre-trained convolutional layer corresponding to the finite-difference filters to estimate differential fields of the generated physical field, and 3) an interpolation network for loss analysis in irregular geometry domains. From a CNN perspective, the physical field is generated by a deconvolution layer and a convolution layer. Unlike the standard Physics-informed Neural Network (PINN) approach, the convolutions corresponding to the finite-difference filters estimate the spatial gradients forming the physical operator and then construct the PDE residual in a PINN-like loss function. The total loss function involving boundary conditions and the physical constraints in irregular geometry domains can be calculated from an efficient linear interpolation network. The theoretical analysis of PICN convergence is performed on a simplified case for solving a one-dimensional physical field, and several examples of nonlinear PDE of solutions with multifrequency characteristics are executed. The theory and examples confirm the effective learning capability of PICN for the physical field solution with high-frequency components, compared to the standard PINN. A series of numerical cases are performed to validate the current PICN, including the solving (and estimation) of nonlinear physical operator equations and recovering physical information from noisy observations. First, the ability of PICN to solve nonlinear PDE has been verified by executing three nonlinear problems including ODE with sine nonlinearity, PDE involving nonlinear sine-square operators, and Schrödinger equation. The proposed PICN has been assessed by solving some nonlinear PDE on irregular domains such as star-shaped domain, bird-like domain, and starfish domain. Moreover, PICN is applied to identify the thermal diffusivity parameters in an anisotropic heat transfer problem from noisy data, and a denoising display of the temperature field from strong noisy data with standard deviations ranging from 0.1-0.4. The numerical results demonstrate the high accuracy approximation and fast convergence performance of PICN. The potential advantage in approximating complex physical fields with multi-frequency components indicates that PICN may become an alternative efficient neural network solver in physics-informed machine learning. This paper is adapted from the work originally posted on arXiv.com by the same authors (arXiv:2201.10967, Jan 26, 2022). The data and code accompanying this paper are publicly available at https://github.com/zengzhi2015/PICN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小萌新发布了新的文献求助10
刚刚
Jasper应助小铭同学采纳,获得10
刚刚
乙醇完成签到 ,获得积分10
刚刚
xhm发布了新的文献求助10
刚刚
Ayu发布了新的文献求助10
刚刚
Sara_Chen发布了新的文献求助30
1秒前
1秒前
瘦瘦的惜筠完成签到,获得积分20
1秒前
行动发布了新的文献求助10
1秒前
yanghua完成签到,获得积分10
1秒前
3秒前
SciGPT应助qkdwwz采纳,获得10
3秒前
3秒前
3秒前
向日葵完成签到,获得积分20
4秒前
CC完成签到 ,获得积分10
5秒前
xuerkk发布了新的文献求助10
6秒前
河水弯弯发布了新的文献求助10
6秒前
邓云峰888完成签到,获得积分10
6秒前
情怀应助Tao2023采纳,获得10
6秒前
6秒前
liuyu0209发布了新的文献求助10
8秒前
做好自己发布了新的文献求助10
8秒前
Alex应助123采纳,获得20
9秒前
和谐的灵松应助无奈冥采纳,获得10
9秒前
lck发布了新的文献求助10
9秒前
10秒前
小蘑菇应助隐形无敌采纳,获得10
10秒前
英俊的铭应助Orochimaru采纳,获得30
11秒前
11秒前
aurora完成签到,获得积分10
11秒前
wangjie发布了新的文献求助10
12秒前
12秒前
小灰灰完成签到,获得积分10
12秒前
小萌新完成签到,获得积分20
12秒前
13秒前
13秒前
完美世界应助瘦瘦的惜筠采纳,获得10
14秒前
沉默寄凡完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938397
求助须知:如何正确求助?哪些是违规求助? 3483989
关于积分的说明 11026639
捐赠科研通 3214003
什么是DOI,文献DOI怎么找? 1776350
邀请新用户注册赠送积分活动 862552
科研通“疑难数据库(出版商)”最低求助积分说明 798511