Pattern recognition for EMG based forearm orientation and contraction in myoelectric prosthetic hand

前臂 计算机科学 肌电图 收缩(语法) 物理医学与康复 方向(向量空间) 语音识别 模式识别(心理学) 人工智能 医学 解剖 数学 内科学 几何学
作者
J. Roselin Suganthi,K. Rajeswari
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (3): 7047-7059 被引量:2
标识
DOI:10.3233/jifs-234196
摘要

Communication is an essential component of human nature. It connects humans, allowing them to learn, grow, col-laborate, and resolve conflicts. Several aspects of human society, relationships, and growth would be significantly hampered in the absence of efficient communication. Hand gesture recognition is a way to interact with technology that can be particularly useful for individuals with disabilities. This hand gesture recognition is mainly employed in sign language translation, healthcare, rehabilitation, prosthesis, and Human-Computer Interaction (HCI). The high degree of dexterity is a main challenge for prosthetic limbs. In order to meet this challenge, hand gesture recognition is employed for the prosthetic limb, which can be used for rehabilitation. The objective of this article is to show the methodology for the recognition of hand gestures using Electromyography (EMG) signals. This article uses the pro-posed time domain feature extraction method called Absolute Fluctuation Analysis (AFA) along with the Root Mean Square (RMS) for the feature extraction method. Along with these feature extraction methods, repeated stratified K-fold cross validation is used for the validation of the classifiers such as the XGB classifier, the K-Nearest Neighbour (KNN) classifier, the Decision Tree classifier, the Random Forest classifier, and the SVM classifier, whose mean recognition accuracy is given by 93.26%, 87.42%, 85.26%, 92.23%, and 91.78%, respectively. The recognition accuracy of machine learning classifiers is being compared with state-of-the-art networks such as artificial neural net-works (ANN), long short-term memory (LSTM), bidirectional LSTM, gated recurrent units (GRU), and convolution-al neural networks (CNN), which provide recognition accuracy of 96.65%, 99.16%, 99.94%, and 99.99%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Till发布了新的文献求助10
2秒前
2秒前
3秒前
pan liu发布了新的文献求助10
3秒前
Hshen发布了新的文献求助10
4秒前
叶叶叶应助mmiww采纳,获得10
4秒前
任浩发布了新的文献求助10
4秒前
情怀应助ww采纳,获得10
4秒前
Ava应助土豆不吃鱼采纳,获得10
4秒前
5秒前
Brave发布了新的文献求助10
5秒前
小小韦完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
5秒前
酷炫如松发布了新的文献求助10
6秒前
hahaha完成签到,获得积分10
6秒前
white完成签到 ,获得积分10
6秒前
YZ发布了新的文献求助10
6秒前
7秒前
AlexLee完成签到,获得积分10
7秒前
烟花应助魔幻的荔枝采纳,获得10
8秒前
8秒前
8秒前
9秒前
黄道婆发布了新的文献求助10
9秒前
有才发布了新的文献求助10
11秒前
白桃乌龙完成签到,获得积分10
11秒前
Nico应助还单身的语琴采纳,获得10
11秒前
高贵梦露发布了新的文献求助10
12秒前
12秒前
13秒前
猪猪hero发布了新的文献求助10
13秒前
13秒前
14秒前
秦紫瑶发布了新的文献求助10
14秒前
Jen完成签到 ,获得积分10
14秒前
温婉的山兰完成签到,获得积分10
14秒前
xzy998应助yys采纳,获得10
14秒前
15秒前
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110558
求助须知:如何正确求助?哪些是违规求助? 3648998
关于积分的说明 11557674
捐赠科研通 3354198
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825912