Encouraging the Mutual Interact between Dataset-level and Image-level Context for Semantic Segmentation of Remote Sensing Image

计算机科学 判别式 人工智能 特征(语言学) 分割 背景(考古学) 模式识别(心理学) 像素 图像分割 相互信息 语义学(计算机科学) 图像(数学) 计算机视觉 古生物学 哲学 语言学 生物 程序设计语言
作者
Ke An,Yupei Wang,Liang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16
标识
DOI:10.1109/tgrs.2024.3352582
摘要

Recently, semantic segmentation of remote sensing images has witnessed rapid advancement with the adoption of deep neural networks. Contextual cues, referring to the long-range correlation between pixels, are crucial for achieving accurate segmentation results, particularly for objects with less discriminative characteristics in these images. Currently, most studies are centered on incorporating contextual cues by aggregating context information at the dataset-level or image-level. However, current research often treats contextual cue modeling at the dataset-level and image-level as independent procedures, neglecting the intrinsic correlation between these two feature levels. Consequently, the obtained contextual cues are sub-optimal. This issue is particularly critical in the semantic segmentation of remote sensing images. To address this, we propose to encourage mutual interaction between dataset-level and image-level contextual cues. Firstly, we propose an interactive dataset-image context aggregation scheme to obtain complementary and consistent multi-level contextual cues. Additionally, we introduce a parallel feature interaction network that progressively extracts and fuses features across multiple layers, enabling effective integration of multi-level contexts. Furthermore, we introduce an enhanced shifted window-based cross-attention mechanism to augment model efficiency. Extensive experimental results on the widely used Vaihingen, GaoFen-2 and iSAID datasets effectively demonstrate the superiority of our proposed method over state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ylq关闭了ylq文献求助
2秒前
无情灯泡发布了新的文献求助10
2秒前
徐若楠发布了新的文献求助20
2秒前
6秒前
xxxzy完成签到,获得积分10
6秒前
7秒前
7秒前
Jasper应助斑马采纳,获得10
8秒前
大白完成签到 ,获得积分10
9秒前
11秒前
xuruiwade1发布了新的文献求助10
11秒前
小龙发布了新的文献求助10
12秒前
15秒前
17秒前
肖耶啵应助nicholasgxz采纳,获得10
17秒前
AnitaAdal应助安小野采纳,获得10
17秒前
ylq关闭了ylq文献求助
18秒前
18秒前
满意的曼寒应助徐若楠采纳,获得20
20秒前
吴文章完成签到 ,获得积分10
20秒前
斑马发布了新的文献求助10
23秒前
战神小新完成签到,获得积分10
24秒前
25秒前
丘比特应助俭朴的乐巧采纳,获得10
26秒前
26秒前
111完成签到,获得积分10
27秒前
29秒前
ylq关闭了ylq文献求助
30秒前
32秒前
32秒前
34秒前
34秒前
34秒前
动听松思发布了新的文献求助10
35秒前
35秒前
35秒前
冰魂应助科研通管家采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
36秒前
FashionBoy应助科研通管家采纳,获得10
36秒前
冰魂应助科研通管家采纳,获得10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248