Precise arrangement of metal atoms at the interface by a thermal printing strategy

纳米颗粒 金属 Atom(片上系统) 碳纤维 透射电子显微镜 图层(电子) 氧原子 硫黄 材料科学 原位 纳米技术 热的 化学物理 结晶学 化学 分子 复合材料 物理 冶金 有机化学 气象学 嵌入式系统 复合数 计算机科学
作者
Lin Tian,Xiaoping Gao,Sicong Wang,Cai Chen,Min Chen,Wenxin Guo,Zhe Wang,Xiaolin Tai,Xiao Han,Chenxi Xu,Yaner Ruan,Mengzhao Zhu,Can Xiong,Takeshi Yao,Huang Zhou,Yue Lin,Yuen Wu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (52) 被引量:2
标识
DOI:10.1073/pnas.2310916120
摘要

The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures. Observed by in situ transmission electron microscopy, a single Fe 3 O 4 nanoparticle migrates from the core of a SiO 2 sphere to the surface like a droplet at high temperatures, moves along the interface of SiO 2 and the coated carbon layer, and releases metal atoms until it disappears completely. These detached atoms are then in situ trapped by nitrogen and sulfur defects in the carbon layer to generate Fe single-atom sites, exhibiting excellent activity for oxygen reduction reaction. Also, sites' densities can be regulated by controlling the size of Fe 3 O 4 nanoparticle between the two surfaces. More importantly, this strategy is applicable to synthesize Mn, Co, Pt, Pd, Au single-atom sites, which provide a general route to arrange single-atom sites at the interface of different supports for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cyjjj发布了新的文献求助10
1秒前
Singularity应助67777采纳,获得20
2秒前
ting发布了新的文献求助10
2秒前
我是老大应助强小强采纳,获得10
3秒前
5秒前
刘多多发布了新的文献求助10
5秒前
SciGPT应助77采纳,获得10
7秒前
xzn1123应助科研通管家采纳,获得10
8秒前
CWNU_HAN应助科研通管家采纳,获得30
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
CWNU_HAN应助科研通管家采纳,获得30
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
CWNU_HAN应助科研通管家采纳,获得30
9秒前
9秒前
思源应助芝士香猪采纳,获得10
9秒前
酷酷白竹应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
123456发布了新的文献求助10
9秒前
12秒前
赘婿应助柳代云采纳,获得30
12秒前
zhaoxiaonuan完成签到,获得积分10
15秒前
123456完成签到,获得积分10
15秒前
巧克力脏脏包完成签到,获得积分10
16秒前
一个橡果完成签到,获得积分10
18秒前
19秒前
谨慎的问雁完成签到 ,获得积分10
21秒前
just完成签到,获得积分20
22秒前
纳纳椰发布了新的文献求助10
23秒前
yliaoyou完成签到,获得积分10
26秒前
Lucas应助just采纳,获得10
27秒前
jijun完成签到,获得积分10
27秒前
28秒前
情怀应助淡然白安采纳,获得10
36秒前
上官若男应助大美女采纳,获得10
38秒前
Christoph_Lee发布了新的文献求助10
40秒前
41秒前
幻月完成签到,获得积分10
42秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2392945
求助须知:如何正确求助?哪些是违规求助? 2097132
关于积分的说明 5284386
捐赠科研通 1824829
什么是DOI,文献DOI怎么找? 910039
版权声明 559943
科研通“疑难数据库(出版商)”最低求助积分说明 486295