TSFRN: Integrated Time and Spatial-Frequency domain based on Triple-links Residual Network for Sales Forecasting

计算机科学 频域 残余物 数据挖掘 领域(数学分析) 深度学习 数据建模 人工神经网络 人工智能 机器学习 算法 数学 计算机视觉 数据库 数学分析
作者
Xiang Yi,Haoran Sun,Wenting Tu,Zejin Tian
标识
DOI:10.1109/ictai59109.2023.00152
摘要

Sales forecasting plays a critical role in optimizing supply chains, reducing costs, and enhancing customer satisfaction within enterprises. The presence of demand volatility, seasonality, and non-linear relationships with products pose higher requirements for forecasting models. Although deep learning models have demonstrated promising performance in addressing these challenges, the majority of research has primarily focused on modeling historical sales variations and product interactions in the time domain or solely considered periodic representations in the frequency domain within the models. We propose a novel deep learning model TSFRN based on the triple-links residual networks to integrate the time and frequency domain information in this paper, which consists of a forecast link, spatial-frequency forecast link, and a backward link. Specifically, in each block of the network, we first use a recurrent neural network to obtain a time domain prediction of historical sales as the forecast link. Next, we apply the Fast Fourier Transform (FFT) to obtain the frequency domain representation of sales data. Subsequently, a spatial-frequency domain attention mechanism is proposed in this study to capture spatial interaction patterns within the frequency domain of the sales data. Finally, we obtain the prediction based on the frequency domain through an inverse fast Fourier transform as the spatial-frequency forecast link. For the backward link, we minus the forecast link by the input of the current block. Overall, our proposed framework integrates both time domain and frequency domain information to model the complex interrelationships among products. By taking into account both model construction and practical applications, our framework provides a more accurate, effective, and general approach to sales forecasting. Experimental validation on publicly available datasets demonstrates the effectiveness of our proposed model, which outperforms existing methods in predicting product sales with improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容羽毛完成签到,获得积分10
1秒前
走走完成签到,获得积分10
4秒前
5秒前
6秒前
ldh032应助柔之采纳,获得10
8秒前
8秒前
前程似锦完成签到 ,获得积分10
9秒前
芒果完成签到 ,获得积分10
11秒前
锂离子发布了新的文献求助10
13秒前
英姑应助Ryan采纳,获得10
14秒前
15秒前
尹恩惠完成签到,获得积分10
15秒前
16秒前
16秒前
冷傲迎梦发布了新的文献求助10
21秒前
积极松鼠完成签到,获得积分10
21秒前
栀梦完成签到,获得积分10
22秒前
Hello应助程翠丝采纳,获得30
22秒前
22秒前
抹茶肥肠发布了新的文献求助10
24秒前
莫惜君灬完成签到 ,获得积分10
24秒前
科研通AI5应助小费采纳,获得50
24秒前
科研通AI5应助小费采纳,获得20
25秒前
糖ing完成签到,获得积分10
26秒前
27秒前
烦恼都走开完成签到,获得积分10
28秒前
抹茶肥肠完成签到,获得积分10
28秒前
罗雄顺发布了新的文献求助30
32秒前
温暖凡灵完成签到,获得积分10
32秒前
yy发布了新的文献求助10
33秒前
35秒前
36秒前
Akim应助Ryan采纳,获得10
36秒前
冷傲迎梦发布了新的文献求助10
41秒前
程翠丝发布了新的文献求助30
41秒前
41秒前
王鹏程发布了新的文献求助10
42秒前
jenningseastera应助糖ing采纳,获得20
43秒前
44秒前
令散内方发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339