Class imbalance-sensitive approach based on PLMs for the detection of cyberbullying in English and Arabic datasets

阿拉伯语 班级(哲学) 计算机科学 人工智能 自然语言处理 机器学习 语言学 哲学
作者
Azzeddine Rachid Benaissa,Azza Harbaoui,Hajjami Henda Ben Ghezala
出处
期刊:Behaviour & Information Technology [Informa]
卷期号:: 1-18 被引量:1
标识
DOI:10.1080/0144929x.2024.2313142
摘要

Social Networking increases allowed the spreading of cyberbullying worldwide. The latter invaded cyberspace, kids and adolescents are no more safe in their virtual playgrounds. Indeed, online bullying is attracting considerable concern due to the societal and health issues it causes, ranging from depression, anxiety, and low self-esteem to sui cide attempts. Automatic cyberbullying detection is becoming a vital factor in protecting individuals' lives. It has received much attention in the last decade. Researchers use machine learning and deep learning models to detect online bullying content. An automatic cyberbullying detection model would flag any bullying text as efficiently as possible. Yet, several challenges lie ahead for the development of such a robust model. Our study discerned class imbalance and bullying text representation as being the major issues concerning cyberbullying classification. In this context, we tried to handle the class imbalance problem through data augmentation, cost-sensitive learning, and lever- aging a Computer Vision loss function for the task. Moreover, we consider a prominent solution for bullying content representation, which consists of fine-tuning Pre-trained Language Models for cyberbullying detection and using these latter as feature extractors for Multichannel ConvNets and Bidirectional LSTMs. The results show the effectiveness of the proposed models, which outperform several past works and provide high Recall values (78%–96%) on English and Arabic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
2秒前
HuangJiajia_FZU完成签到,获得积分10
2秒前
所所应助Bigheart贝卡斯采纳,获得80
2秒前
2秒前
王小志完成签到,获得积分10
3秒前
闪闪的星星完成签到,获得积分10
4秒前
4秒前
4秒前
Uu发布了新的文献求助10
5秒前
5秒前
充电宝应助ypppp采纳,获得10
6秒前
dangdangdang发布了新的文献求助10
6秒前
llll完成签到,获得积分20
6秒前
8秒前
8秒前
9秒前
清脆糖豆发布了新的文献求助10
9秒前
10秒前
Orange应助medaW采纳,获得10
10秒前
子寒完成签到,获得积分10
12秒前
flysky120发布了新的文献求助10
12秒前
12秒前
饱满的不可完成签到,获得积分10
12秒前
浮游应助HuangJiajia_FZU采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
怡然凝云发布了新的文献求助10
14秒前
王小志发布了新的文献求助10
16秒前
ding完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
无极微光应助gggja采纳,获得20
17秒前
SSSstriker发布了新的文献求助10
17秒前
芋圆应助豆豆采纳,获得10
17秒前
fish完成签到,获得积分10
17秒前
18秒前
prxMatcha完成签到,获得积分10
18秒前
baimo发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492447
求助须知:如何正确求助?哪些是违规求助? 4590578
关于积分的说明 14431018
捐赠科研通 4523031
什么是DOI,文献DOI怎么找? 2478141
邀请新用户注册赠送积分活动 1463167
关于科研通互助平台的介绍 1435852