Fully Spiking Actor Network With Intralayer Connections for Reinforcement Learning

尖峰神经网络 神经形态工程学 强化学习 计算机科学 人口 人工智能 任务(项目管理) 领域(数学分析) 学习规律 维数(图论) 人工神经网络 工程类 人口学 社会学 数学分析 系统工程 纯数学 数学
作者
Ding Chen,Peixi Peng,Tiejun Huang,Yonghong Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3352653
摘要

With the help of special neuromorphic hardware, spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption. It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (DRL). In this article, we focus on the task where the agent needs to learn multidimensional deterministic policies to control, which is very common in real scenarios. Recently, the surrogate gradient method has been utilized for training multilayer SNNs, which allows SNNs to achieve comparable performance with the corresponding deep networks in this task. Most existing spike-based reinforcement learning (RL) methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully connected (FC) layer. However, the decimal characteristic of the firing rate brings the floating-point matrix operations to the FC layer, making the whole SNN unable to deploy on the neuromorphic hardware directly. To develop a fully spiking actor network (SAN) without any floating-point matrix operations, we draw inspiration from the nonspiking interneurons found in insects and employ the membrane voltage of the nonspiking neurons to represent the action. Before the nonspiking neurons, multiple population neurons are introduced to decode different dimensions of actions. Since each population is used to decode a dimension of action, we argue that the neurons in each population should be connected in time domain and space domain. Hence, the intralayer connections are used in output populations to enhance the representation capacity. This mechanism exists extensively in animals and has been demonstrated effectively. Finally, we propose a fully SAN with intralayer connections (ILC-SAN). Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art performance on continuous control tasks from OpenAI gym. Moreover, we estimate the theoretical energy consumption when deploying ILC-SAN on neuromorphic chips to illustrate its high energy efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sycsyc完成签到,获得积分10
3秒前
4秒前
下雨天爱吃鱼完成签到,获得积分10
4秒前
MM发布了新的文献求助10
6秒前
云竹丶完成签到,获得积分10
6秒前
甫寸完成签到 ,获得积分10
6秒前
7秒前
热心一一完成签到 ,获得积分10
7秒前
阿邱发布了新的文献求助10
11秒前
nana发布了新的文献求助10
11秒前
11秒前
林大聪明关注了科研通微信公众号
12秒前
小王完成签到 ,获得积分10
12秒前
wgcheng完成签到,获得积分10
13秒前
淡定的如风完成签到,获得积分10
13秒前
腼腆的黎昕完成签到,获得积分10
15秒前
雨慧完成签到 ,获得积分10
15秒前
隐形曼青应助乃惜采纳,获得10
17秒前
在水一方应助我是高手吗采纳,获得10
18秒前
panzhongjie完成签到,获得积分10
18秒前
无敌小宽哥应助积极书双采纳,获得10
19秒前
非哲完成签到 ,获得积分10
21秒前
慕荣晓英完成签到,获得积分10
21秒前
仁济泌外发布了新的文献求助10
22秒前
22秒前
22秒前
Li完成签到,获得积分10
23秒前
Aimee完成签到 ,获得积分10
23秒前
25秒前
26秒前
左山又海发布了新的文献求助30
26秒前
云峤完成签到 ,获得积分10
27秒前
turbohero完成签到,获得积分10
27秒前
wanz发布了新的文献求助30
28秒前
彭于晏应助淘气科研采纳,获得10
29秒前
期刊发布了新的文献求助30
30秒前
林夕发布了新的文献求助10
31秒前
哈哈哈哈哈完成签到 ,获得积分10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131916
求助须知:如何正确求助?哪些是违规求助? 3668660
关于积分的说明 11602320
捐赠科研通 3365906
什么是DOI,文献DOI怎么找? 1849261
邀请新用户注册赠送积分活动 912953
科研通“疑难数据库(出版商)”最低求助积分说明 828374