Hetero-Motif Molecular Junction Photocatalysts: A New Frontier in Artificial Photosynthesis

异质结 人工光合作用 氧化还原 结构母题 纳米技术 半导体 化学 材料科学 光电子学 光催化 生物化学 有机化学 冶金 催化作用
作者
Lei Zhang,Jiang Liu,Ya‐Qian Lan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (6): 870-883 被引量:15
标识
DOI:10.1021/acs.accounts.3c00751
摘要

ConspectusTo cope with the increasingly global greenhouse effect and energy shortage, it is urgent to develop a feasible means to convert anthropogenic excess carbon dioxide (CO2) into energy resources. The photocatalytic CO2 reduction reaction (CO2RR) coupled with the water oxidation reaction (WOR), known as artificial photosynthesis, is a green, clean, and promoting strategy to deal with the above issues. Among the reported photocatalytic systems for CO2 reduction, the main challenge is to achieve WOR simultaneously due to the limited charge separation efficiency and complicated dynamic process. To address the problem, scientists have assembled two nanosemiconductor motifs for CO2RR and WOR into a heterojunction photocatalyst to realize artificial photosynthesis. However, it is difficult to clearly explore the corresponding catalytic mechanism and establish an accurate structure–activity relationship at the molecular level for their aperiodic distribution and complicated structural information. Standing on the shoulders of the heterojunction photocatalysts, a new-generation material, hetero-motif molecular junction (HMMJ) photocatalysts, has been developed and studied by our laboratory. A hetero-motif molecular junction is a class of crystalline materials with a well-defined and periodic structure, adjustable assembly mode, and semiconductor-like properties, which is composed of two predesigned motifs with oxidation and reduction, respectively, by coordination or covalent bonds. The intrinsic properties make these catalysts susceptible to functional modifications to improve light absorption and electrical conductivity. The small size and short distance of the motifs can greatly promote the efficiency of photogenerated electron–hole separation and migration. Based on these advantages, they can be used as potential excellent photocatalysts for artificial photosynthesis. Notably, the explicit structural information determined by single-crystal or powder X-ray diffraction can provide a visual platform to explore the reaction mechanism. More importantly, the connection number, spatial distance, interaction, and arrangement mode of the structural motifs can be well-designed to explore the detailed structure–activity relationship that can be hardly studied in nanoheterojunction photocatalyst systems. In this regard, HMMJ photocatalysts can be a new frontier in artificial photosynthesis and serve as an important bridge between molecular photocatalysts and solid photocatalysts. Thus, it is very important to summarize the state-of-the-art of the HMMJ photocatalysts used for artificial photosynthesis and to give in-depth insight to promote future development.In this Account, we have summarized the recent advances in artificial photosynthesis using HMMJ photocatalysts, mainly focusing on the results in our lab. We present an overview of current knowledge about developed photocatalytic systems for artificial photosynthesis, introduce the design schemes of the HMMJ photocatalysts and their unique advantages as compared to other photocatalysts, summarize the construction strategies of HMMJ photocatalysts and their application in artificial photosynthesis, and explain why hetero-motif molecular junctions can be promising photocatalysts and show that they provide a powerful platform for studying photocatalysis. The structure–activity relationship and charge separation dynamics are illustrated. Finally, we bring our outlook on present challenges and future development of HMMJ photocatalysts and their potential application prospects on other photocatalytic reaction systems. We believe that this Account will afford important insights for the construction of high-efficiency photocatalysts and guidance for the development of more photocatalytic systems in an atom-economic, environmentally friendly, and sustainable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求求完成签到 ,获得积分10
7秒前
9秒前
小鲤鱼完成签到,获得积分10
9秒前
盐汽水完成签到 ,获得积分10
12秒前
lxr2发布了新的文献求助10
14秒前
嘉丽的后花园完成签到,获得积分10
15秒前
Hana关注了科研通微信公众号
18秒前
ssy完成签到,获得积分10
23秒前
pebble完成签到,获得积分10
23秒前
爆米花应助积极以云采纳,获得10
23秒前
浅笑成风完成签到,获得积分10
27秒前
27秒前
Yolo完成签到,获得积分10
28秒前
无辜念文完成签到,获得积分10
29秒前
科研通AI5应助笨笨忘幽采纳,获得10
31秒前
积极以云完成签到,获得积分10
31秒前
31秒前
argon完成签到,获得积分10
34秒前
caicai完成签到 ,获得积分10
35秒前
研友_ZeqAxZ完成签到,获得积分10
36秒前
云烟成雨完成签到,获得积分10
37秒前
lr完成签到 ,获得积分10
38秒前
woobinhua发布了新的文献求助10
38秒前
小白兔完成签到 ,获得积分10
39秒前
林夕完成签到,获得积分10
40秒前
轩辕剑身完成签到,获得积分0
42秒前
小美完成签到,获得积分10
44秒前
无花果应助不缺人YYDS采纳,获得10
45秒前
木子李完成签到 ,获得积分10
46秒前
zh完成签到 ,获得积分10
46秒前
Snow完成签到 ,获得积分10
47秒前
51秒前
小呵点完成签到 ,获得积分10
53秒前
sheh发布了新的文献求助10
54秒前
55秒前
正正完成签到 ,获得积分10
56秒前
didi完成签到,获得积分10
59秒前
1分钟前
不缺人YYDS发布了新的文献求助10
1分钟前
XRWei完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734