Development of functionally graded austenitic lightweight steel through electrically assisted pressure solid-state joining

材料科学 奥氏体 碳化物 制作 兴奋剂 复合材料 奥氏体不锈钢 扩散 相(物质) 冶金 微观结构 光电子学 热力学 腐蚀 医学 替代医学 物理 有机化学 化学 病理
作者
Siwhan Lee,Joonoh Moon,Hwangsun Kim,Yong Hwan Cho,Ho Hyeong Lee,Howook Choi,Yijae Kim,Dong-Woo Suh,Kyeongjae Jeong,Heung Nam Han
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:891: 146003-146003 被引量:3
标识
DOI:10.1016/j.msea.2023.146003
摘要

Functionally graded materials synergistically combine dissimilar components and can be engineered to exhibit gradual controlled variations in composition, structure, or properties, thus featuring advantageous mechanical properties and finding numerous practical applications. However, lightweight functionally graded materials such as those based on lightweight steels (LWSs) remain underexplored, albeit their advancement has significant merit in reducing the overall weight of a component or structure. To address, this study investigates the effective application of austenitic Fe–Mn–Al–C lightweight steels via the fabrication of a functionally graded material, enabling a synergistic combination of their dissimilar properties. Focusing on the mechanical properties of austenitic LWS that can be controlled through κ-carbide precipitation, we propose a novel functionally graded material developed by joining Mo-doped LWS and Si-doped LWS, which exhibit different κ-carbide precipitation behaviors. Electrically assisted pressure joining, an effective solid-state joining technique capable of enhancing atomic diffusion, was employed to strongly bond two dissimilar LWSs with improved joint integrity while preserving a homogeneous austenite matrix at the joint. Mechanical and microstructural characterization demonstrated that a high-quality and reliable solid-state joint was achieved within a short timeframe of a few minutes without elemental segregations and phase transformations in the metal matrix. The opposing tendencies of Mo to retard the κ-carbide kinetics and Si to enhance it resulted in two divided regions: a Mo-doped low hardness zone and a Si-doped high hardness zone in the joined LWS. Furthermore, by exploiting carbon diffusion driven by the chemical potential gradient, we successfully attained remarkable gradients in the amount of κ-carbide precipitate and hardness, from the joint interface to the Si-doped high hardness region. These findings manifest the applicability of the suggested technique in the meticulous design of functionally graded LWS joint materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初见完成签到 ,获得积分10
1秒前
yinghong发布了新的文献求助10
2秒前
雷晨晨完成签到 ,获得积分10
2秒前
hebhm完成签到,获得积分10
2秒前
WZH123456完成签到,获得积分10
3秒前
4秒前
bing完成签到,获得积分10
4秒前
我很好完成签到 ,获得积分10
5秒前
我是小猪亨利完成签到 ,获得积分10
7秒前
易槐完成签到 ,获得积分10
8秒前
8秒前
梁凉完成签到 ,获得积分10
10秒前
xuli21315完成签到 ,获得积分10
11秒前
安子完成签到 ,获得积分10
11秒前
Ricardo完成签到 ,获得积分10
13秒前
spy完成签到 ,获得积分10
14秒前
热可可728完成签到,获得积分10
14秒前
khh完成签到 ,获得积分10
15秒前
super小萌萌完成签到 ,获得积分10
17秒前
影像大侠完成签到,获得积分10
19秒前
Yang22完成签到,获得积分10
19秒前
糕手完成签到,获得积分20
19秒前
俗人完成签到,获得积分10
23秒前
elsa622完成签到 ,获得积分10
25秒前
yinghong完成签到,获得积分10
27秒前
隐形曼青应助笨笨小熊猫采纳,获得10
28秒前
小李子完成签到 ,获得积分10
29秒前
六初完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助50
32秒前
X17完成签到,获得积分10
34秒前
35秒前
36秒前
pp完成签到,获得积分10
37秒前
001完成签到,获得积分10
37秒前
瘦瘦完成签到,获得积分10
39秒前
39秒前
JianminLuo发布了新的文献求助10
40秒前
llhh2024发布了新的文献求助10
41秒前
传统的复天完成签到,获得积分10
43秒前
尔玉完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Impaired Driving as a Public Health Concern and Healthcare Technology Approaches 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5020924
求助须知:如何正确求助?哪些是违规求助? 4259200
关于积分的说明 13272145
捐赠科研通 4064863
什么是DOI,文献DOI怎么找? 2223323
邀请新用户注册赠送积分活动 1232307
关于科研通互助平台的介绍 1156137