亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electronic eye and electronic tongue data fusion combined with a GETNet model for the traceability and detection of Astragalus

电子舌 模式识别(心理学) 瓶颈 光谱图 追踪 计算机科学 人工智能 食品科学 操作系统 嵌入式系统 化学 品味
作者
Xinning Jin,Zhiqiang Wang,Jingyu Ma,Chuanzheng Liu,Xuerui Bai,Yubin Lan
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (10): 5930-5943 被引量:1
标识
DOI:10.1002/jsfa.13450
摘要

Abstract BACKGROUND Astragalus is a widely used traditional Chinese medicine material that is easily confused due to its quality, price and other factors derived from different origins. This article describes a novel method for the rapid tracing and detection of Astragalus via the joint application of an electronic tongue (ET) and an electronic eye (EE) combined with a lightweight convoluted neural network (CNN)–transformer model. First, ET and EE systems were employed to measure the taste fingerprints and appearance images, respectively, of different Astragalus samples. Three spectral transform methods – the Markov transition field, short‐time Fourier transform and recurrence plot – were utilized to convert the ET signals into 2D spectrograms. Then, the obtained ET spectrograms were fused with the EE image to obtain multimodal information. A lightweight hybrid model, termed GETNet, was designed to achieve pattern recognition for the Astragalus fusion information. The proposed model employed an improved transformer module and an improved Ghost bottleneck as its backbone network, complementarily utilizing the benefits of CNN and transformer architectures for local and global feature representation. Furthermore, the Ghost bottleneck was further optimized using a channel attention technique, which boosted the model's feature extraction effectiveness. RESULTS The experiments indicate that the proposed data fusion strategy based on ET and EE devices has better recognition accuracy than that attained with independent sensing devices. CONCLUSION The proposed method achieved high precision (99.1%) and recall (99.1%) values, providing a novel approach for rapidly identifying the origin of Astragalus, and it holds great promise for applications involving other types of Chinese herbal medicines. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得30
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
Owen应助科研通管家采纳,获得10
55秒前
JamesPei应助科研通管家采纳,获得10
55秒前
有风的地方完成签到 ,获得积分10
1分钟前
打工仔完成签到,获得积分10
1分钟前
星辰大海应助郭497采纳,获得10
1分钟前
李剑鸿发布了新的文献求助50
2分钟前
李剑鸿发布了新的文献求助50
2分钟前
2分钟前
李剑鸿发布了新的文献求助50
2分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
rrrrrrry发布了新的文献求助10
2分钟前
3分钟前
3分钟前
不打烊吗发布了新的文献求助10
3分钟前
李爱国应助不打烊吗采纳,获得30
4分钟前
孙燕完成签到,获得积分10
4分钟前
4分钟前
成就丸子完成签到 ,获得积分10
4分钟前
zhj发布了新的文献求助10
4分钟前
大个应助爱听歌笑寒采纳,获得10
4分钟前
zhj完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
郭497发布了新的文献求助10
4分钟前
aprise完成签到 ,获得积分10
4分钟前
卑微学术人完成签到 ,获得积分10
4分钟前
烟花应助爱听歌笑寒采纳,获得10
5分钟前
CodeCraft应助郭497采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
lsx完成签到,获得积分10
5分钟前
Jasper应助爱听歌笑寒采纳,获得10
6分钟前
轻松小张完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360038
捐赠科研通 3068736
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033