Electronic eye and electronic tongue data fusion combined with a GETNet model for the traceability and detection of Astragalus

电子舌 模式识别(心理学) 瓶颈 光谱图 追踪 计算机科学 人工智能 食品科学 操作系统 嵌入式系统 化学 品味
作者
Xinning Jin,Zhiqiang Wang,Jingyu Ma,Chuanzheng Liu,Xuerui Bai,Yubin Lan
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (10): 5930-5943 被引量:8
标识
DOI:10.1002/jsfa.13450
摘要

Abstract BACKGROUND Astragalus is a widely used traditional Chinese medicine material that is easily confused due to its quality, price and other factors derived from different origins. This article describes a novel method for the rapid tracing and detection of Astragalus via the joint application of an electronic tongue (ET) and an electronic eye (EE) combined with a lightweight convoluted neural network (CNN)–transformer model. First, ET and EE systems were employed to measure the taste fingerprints and appearance images, respectively, of different Astragalus samples. Three spectral transform methods – the Markov transition field, short‐time Fourier transform and recurrence plot – were utilized to convert the ET signals into 2D spectrograms. Then, the obtained ET spectrograms were fused with the EE image to obtain multimodal information. A lightweight hybrid model, termed GETNet, was designed to achieve pattern recognition for the Astragalus fusion information. The proposed model employed an improved transformer module and an improved Ghost bottleneck as its backbone network, complementarily utilizing the benefits of CNN and transformer architectures for local and global feature representation. Furthermore, the Ghost bottleneck was further optimized using a channel attention technique, which boosted the model's feature extraction effectiveness. RESULTS The experiments indicate that the proposed data fusion strategy based on ET and EE devices has better recognition accuracy than that attained with independent sensing devices. CONCLUSION The proposed method achieved high precision (99.1%) and recall (99.1%) values, providing a novel approach for rapidly identifying the origin of Astragalus, and it holds great promise for applications involving other types of Chinese herbal medicines. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YKK发布了新的文献求助10
刚刚
xxfsx应助zhu采纳,获得10
刚刚
wanci应助yqsf789采纳,获得10
刚刚
纯真乐儿发布了新的文献求助10
1秒前
朝阳发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
脑洞疼应助lily采纳,获得10
2秒前
马美丽完成签到 ,获得积分10
2秒前
3秒前
悠米爱吃图奇完成签到 ,获得积分10
3秒前
壹贰发布了新的文献求助10
3秒前
3秒前
3秒前
完美世界应助陈竞芬采纳,获得10
3秒前
票子完成签到 ,获得积分10
4秒前
镓氧锌钇铀应助玻璃球采纳,获得20
4秒前
xin_ok发布了新的文献求助10
4秒前
乐乐应助王贺采纳,获得10
5秒前
fth完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
靓丽的采白完成签到,获得积分10
5秒前
丹D应助科研通管家采纳,获得10
5秒前
秃头僧发布了新的文献求助10
5秒前
4399发布了新的文献求助10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
一叶扁舟完成签到,获得积分20
5秒前
yznfly应助科研通管家采纳,获得40
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
乐乐应助biubiubiu采纳,获得10
6秒前
犹豫的雯完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482882
求助须知:如何正确求助?哪些是违规求助? 4583608
关于积分的说明 14390932
捐赠科研通 4513013
什么是DOI,文献DOI怎么找? 2473299
邀请新用户注册赠送积分活动 1459278
关于科研通互助平台的介绍 1432917