iProm-Yeast: Prediction Tool for Yeast Promoters Based on ML Stacking

发起人 计算生物学 酿酒酵母 基因组 堆积 卷积神经网络 人工智能 生物 基因 遗传学 计算机科学 特征(语言学) 机器学习 模式识别(心理学) 基因表达 物理 核磁共振 语言学 哲学
作者
Muhammad Shujaat,Sung-Goo Yoo,Hilal Tayara,Kil To Chong
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19 (2): 162-173
标识
DOI:10.2174/0115748936256869231019113616
摘要

Background and Objective: Gene promoters play a crucial role in regulating gene transcription by serving as DNA regulatory elements near transcription start sites. Despite numerous approaches, including alignment signal and content-based methods for promoter prediction, accurately identifying promoters remains challenging due to the lack of explicit features in their sequences. Consequently, many machine learning and deep learning models for promoter identification have been presented, but the performance of these tools is not precise. Most recent investigations have concentrated on identifying sigma or plant promoters. While the accurate identification of Saccharomyces cerevisiae promoters remains an underexplored area. In this study, we introduced “iPromyeast”, a method for identifying yeast promoters. Using genome sequences from the eukaryotic yeast Saccharomyces cerevisiae, we investigate vector encoding and promoter classification. Additionally, we developed a more difficult negative set by employing promoter sequences rather than nonpromoter regions of the genome. The newly developed negative reconstruction approach improves classification and minimizes the amount of false positive predictions. Methods: To overcome the problems associated with promoter prediction, we investigate alternate vector encoding and feature extraction methodologies. Following that, these strategies are coupled with several machine learning algorithms and a 1-D convolutional neural network model. Our results show that the pseudo-dinucleotide composition is preferable for feature encoding and that the machine- learning stacking approach is excellent for accurate promoter categorization. Furthermore, we provide a negative reconstruction method that uses promoter sequences rather than non-promoter regions, resulting in higher classification performance and fewer false positive predictions. Results: Based on the results of 5-fold cross-validation, the proposed predictor, iProm-Yeast, has a good potential for detecting Saccharomyces cerevisiae promoters. The accuracy (Acc) was 86.27%, the sensitivity (Sn) was 82.29%, the specificity (Sp) was 89.47%, the Matthews correlation coefficient (MCC) was 0.72, and the area under the receiver operating characteristic curve (AUROC) was 0.98. We also performed a cross-species analysis to determine the generalizability of iProm-Yeast across other species. Conclusion: iProm-Yeast is a robust method for accurately identifying Saccharomyces cerevisiae promoters. With advanced vector encoding techniques and a negative reconstruction approach, it achieves improved classification accuracy and reduces false positive predictions. In addition, it offers researchers a reliable and precise webserver to study gene regulation in diverse organisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溪鱼完成签到,获得积分10
刚刚
baek完成签到,获得积分10
2秒前
科研通AI5应助hyhyhyhy采纳,获得10
4秒前
花痴的手套完成签到 ,获得积分10
4秒前
yanghong发布了新的文献求助10
4秒前
4秒前
5秒前
sh1ro完成签到,获得积分10
5秒前
wjz关注了科研通微信公众号
5秒前
liu完成签到 ,获得积分10
6秒前
小卢完成签到,获得积分10
6秒前
7秒前
谢悠悠完成签到,获得积分10
8秒前
啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
8秒前
深情安青应助纯情的寻绿采纳,获得10
10秒前
11秒前
lucindy完成签到,获得积分10
12秒前
12秒前
13秒前
飘逸的傲霜完成签到 ,获得积分10
13秒前
领导范儿应助科研兄采纳,获得10
14秒前
苗条曲奇发布了新的文献求助10
14秒前
落木萧萧完成签到,获得积分10
17秒前
17秒前
hyhyhyhy发布了新的文献求助10
18秒前
必行关注了科研通微信公众号
18秒前
18秒前
中科路2020完成签到,获得积分10
19秒前
shengdong发布了新的文献求助10
19秒前
丘比特应助苗条曲奇采纳,获得10
20秒前
LZQ应助YYYYYaaa采纳,获得20
20秒前
PPP发布了新的文献求助10
20秒前
leexiaoyang完成签到,获得积分20
21秒前
米里迷路发布了新的文献求助10
21秒前
大个应助view采纳,获得10
22秒前
22秒前
森巴小妹完成签到,获得积分10
22秒前
hurrican关注了科研通微信公众号
22秒前
24秒前
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243