Mapping enhancer and chromatin accessibility landscapes charts the regulatory network of Alzheimer's disease

增强子 染色质 表观遗传学 DNA甲基化 生物 转录因子 表观遗传学 计算生物学 基因表达调控 甲基化 遗传学 调节顺序 基因调控网络 基因 基因表达
作者
Dahua Xu,Chun-rui Zhang,Xiaoman Bi,Jiankai Xu,Shengnan Guo,Peihu Li,Yongqi Shen,Jinglei Cai,Nihui Zhang,Guanghui Tian,Haifei Zhang,Hong Wang,Qifu Li,Hong-Yan Jiang,Jianpeng Wang,Xia Li,Yongsheng Li,Kongning Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107802-107802
标识
DOI:10.1016/j.compbiomed.2023.107802
摘要

Enhancers are regulatory elements that target and modulate gene expression and play a role in human health and disease. However, the roles of enhancer regulatory circuit abnormalities driven by epigenetic alterations in Alzheimer's disease (AD) are unclear. In this study, a multiomic integrative analysis was performed to map enhancer and chromatin accessibility landscapes and identify regulatory network abnormalities in AD. We identified differentially methylated enhancers and constructed regulatory networks across brain regions using AD brain tissue samples. Through the integration of snATAC-seq and snRNA-seq datasets, we mapped enhancers with DNA methylation alterations (DMA) and chromatin accessibility landscapes. Core regulatory triplets that contributed to AD neuropathology in specific cell types were further prioritized. We revealed widespread DNA methylation alterations (DMA) in the enhancers of AD patients across different brain regions. In addition, the genome-wide transcription factor (TF) binding profiles showed that enhancers with DMA are pervasively regulated by TFs. The TF-enhancer-gene regulatory network analysis identified core regulatory triplets that are associated with immune cell infiltration and play important roles in AD pathogenesis. Enhancer regulatory circuits with DMA exhibited distinct chromatin accessibility patterns, which were further characterized at single-cell resolutions. Our study comprehensively investigated DNA methylation-mediated regulatory circuit abnormalities and provided novel insights into the potential pathogenesis of AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助kai采纳,获得10
1秒前
无花果应助dadad采纳,获得10
1秒前
科目三应助xx采纳,获得10
3秒前
bkagyin应助LIJINGGE采纳,获得10
5秒前
无花果应助LIJINGGE采纳,获得10
5秒前
慕青应助LIJINGGE采纳,获得10
5秒前
所所应助LIJINGGE采纳,获得10
5秒前
Jayran完成签到 ,获得积分10
5秒前
无花果应助动人的老黑采纳,获得10
8秒前
10秒前
pluto应助LIJINGGE采纳,获得10
11秒前
慕青应助LIJINGGE采纳,获得10
11秒前
CipherSage应助LIJINGGE采纳,获得10
11秒前
酷波er应助LIJINGGE采纳,获得10
11秒前
FashionBoy应助LIJINGGE采纳,获得10
11秒前
搜集达人应助LIJINGGE采纳,获得10
11秒前
Ava应助LIJINGGE采纳,获得10
11秒前
桐桐应助LIJINGGE采纳,获得10
11秒前
共享精神应助LIJINGGE采纳,获得10
11秒前
CodeCraft应助LIJINGGE采纳,获得10
11秒前
ygr完成签到,获得积分0
13秒前
14秒前
李爱国应助study采纳,获得10
14秒前
18秒前
沙珠完成签到,获得积分10
19秒前
19秒前
可爱的函函应助甜美无剑采纳,获得10
20秒前
八点必起完成签到,获得积分10
21秒前
标致大开完成签到 ,获得积分10
22秒前
28秒前
32秒前
jianning发布了新的文献求助10
35秒前
35秒前
Suica发布了新的文献求助10
35秒前
开心完成签到 ,获得积分10
35秒前
35秒前
37秒前
蔺山河发布了新的文献求助10
37秒前
翠翠发布了新的文献求助10
38秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415