The emerging basketball discipline: unpacking game outcomes in the 3 × 3 basketball professional league based on performance indicators and contextual variables

篮球 联盟 锦标赛 绩效指标 结果(博弈论) 逻辑回归 计算机科学 拆箱 质量(理念) 心理学 应用心理学 营销 机器学习 业务 数学 组合数学 物理 认识论 历史 哲学 数理经济学 语言学 考古 天文
作者
K. Chen,Daniel Memmert,Marc Garnica Caparrós
出处
期刊:International Journal of Performance Analysis in Sport [Taylor & Francis]
卷期号:24 (4): 314-330 被引量:1
标识
DOI:10.1080/24748668.2023.2296804
摘要

3 × 3 basketball has become a popular urban team sport, and there has been a noticeable growth in research focused on this emerging basketball discipline. The aim of this study was to unpack the game outcome based on performance indicators and contextual variables. For this purpose and to achieve an objective evaluation, 13 performance indicators and the quality of opponents were fitted into logistic regression, decision tree, and neural network. Results showcased that the accuracy of the classification of neural networks markedly outperformed others under different game types and the stage of the tournament. Four key performance indicators that significantly impacted all game outcomes under two contextual variables were the percentage of 2-points and 1-points, defensive rebounds and turnovers, and the positive influence of the quality of the opponent on the game outcome was detected in the four sub-datasets. Furthermore, the performance indicators of ball possession and key assists can support classifying winning and losing teams from the games in regular and playoff seasons, respectively, while team fouls and extra free throws can facilitate discrimination of the game outcome in balanced games. This study will serve as a foundational resource to enhance the decision-making processes for participants in 3 × 3 basketball.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后醉易发布了新的文献求助10
1秒前
大个应助小远儿采纳,获得10
1秒前
Jasper应助追光采纳,获得10
2秒前
2秒前
忧虑的慕山完成签到,获得积分10
4秒前
Holland应助ccalvintan采纳,获得10
7秒前
金熙美发布了新的文献求助10
9秒前
9秒前
10秒前
13秒前
如意完成签到,获得积分10
13秒前
JETSTREAM完成签到,获得积分10
15秒前
tdtk发布了新的文献求助10
15秒前
英俊的铭应助顺利的冬瓜采纳,获得10
15秒前
倪斯芮完成签到 ,获得积分10
16秒前
奔波儿灞完成签到,获得积分20
17秒前
Mercury完成签到 ,获得积分10
18秒前
WSSY完成签到,获得积分10
18秒前
轮海完成签到,获得积分10
21秒前
Tiamo完成签到,获得积分10
21秒前
奔波儿灞发布了新的文献求助10
24秒前
知知发布了新的文献求助10
24秒前
淡淡碧玉完成签到 ,获得积分10
24秒前
26秒前
彭于晏应助wyby采纳,获得10
30秒前
DDT完成签到,获得积分10
30秒前
识途完成签到,获得积分10
30秒前
打打应助畅快的长颈鹿采纳,获得10
31秒前
lhs完成签到,获得积分10
32秒前
科研通AI5应助tdtk采纳,获得10
34秒前
36秒前
Akim应助地三鲜采纳,获得10
36秒前
xiaoliu完成签到,获得积分10
37秒前
斯文败类应助Aurora采纳,获得10
37秒前
39秒前
乌冬面发布了新的文献求助10
41秒前
42秒前
43秒前
47秒前
fragile完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563