Anti-Biofilm: Machine Learning Assisted Prediction of IC50 Activity of Chemicals Against Biofilms of Microbes Causing Antimicrobial Resistance and Implications in Drug Repurposing

生物膜 机器学习 稳健性(进化) 人工智能 抗菌剂 抗生素耐药性 支持向量机 计算机科学 生化工程 生物 微生物学 细菌 抗生素 工程类 生物化学 遗传学 基因
作者
Akanksha Rajput,Kailash T. Bhamare,Anamika Thakur,Manoj Kumar
出处
期刊:Journal of Molecular Biology [Elsevier BV]
卷期号:435 (14): 168115-168115 被引量:10
标识
DOI:10.1016/j.jmb.2023.168115
摘要

Biofilms are one of the leading causes of antibiotic resistance. It acts as a physical barrier against the human immune system and drugs. The use of anti-biofilm agents helps in tackling the menace of antibiotic resistance. The identification of efficient anti-biofilm chemicals remains a challenge. Therefore, in this study, we developed 'anti-Biofilm', a machine learning technique (MLT) based predictive algorithm for identifying and analyzing the biofilm inhibition of small molecules. The algorithm is developed using experimentally validated anti-biofilm compounds with half maximal inhibitory concentration (IC50) values extracted from aBiofilm resource. Out of the five MLTs, the Support Vector Machine performed best with Pearson's correlation coefficient of 0.75 on the training/testing data set. The robustness of the developed model was further checked using an independent validation dataset. While analyzing the chemical diversity of the anti-biofilm compounds, we observed that they occupy diverse chemical spaces with parent molecules like furanone, urea, phenolic acids, quinolines, and many more. Use of diverse chemicals as input further signifies the robustness of our predictive models. The three best-performing machine learning models were implemented as a user-friendly 'anti-Biofilm' web server (https://bioinfo.imtech.res.in/manojk/antibiofilm/) with different other modules which make 'anti-Biofilm' a comprehensive platform. Therefore, we hope that our initiative will be helpful for the scientific community engaged in identifying effective anti-biofilm agents to target the problem of antimicrobial resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heart发布了新的文献求助30
1秒前
青青完成签到,获得积分10
2秒前
2秒前
充电宝应助tom采纳,获得10
3秒前
3秒前
九月完成签到,获得积分10
5秒前
heart完成签到,获得积分10
6秒前
li发布了新的文献求助10
8秒前
15秒前
15秒前
昵称发布了新的文献求助10
16秒前
meng完成签到,获得积分10
17秒前
HongqiZhang发布了新的文献求助10
17秒前
Owen应助儒雅凡桃采纳,获得10
17秒前
18秒前
今今发布了新的文献求助10
22秒前
DrY发布了新的文献求助10
22秒前
24秒前
安安发布了新的文献求助20
25秒前
26秒前
彭于晏应助baiyujing采纳,获得10
27秒前
zzz完成签到 ,获得积分10
28秒前
29秒前
害羞万天发布了新的文献求助10
29秒前
善良的疯丫头完成签到,获得积分10
30秒前
31秒前
baiyujing完成签到,获得积分10
32秒前
mmmm完成签到,获得积分10
33秒前
35秒前
rony发布了新的文献求助10
37秒前
38秒前
倔驴发布了新的文献求助10
39秒前
iNk应助科研通管家采纳,获得10
39秒前
glj应助科研通管家采纳,获得10
39秒前
李爱国应助科研通管家采纳,获得10
39秒前
天天快乐应助科研通管家采纳,获得10
39秒前
iNk应助科研通管家采纳,获得20
39秒前
华仔应助iuun采纳,获得10
39秒前
张张发布了新的文献求助10
39秒前
大力元霜完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843