已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization

贝叶斯优化 粒子群优化 鉴定(生物学) 杠杆(统计) 计算机科学 系统标识 贝叶斯概率 工程类 人工智能 数据挖掘 机器学习 植物 生物 度量(数据仓库)
作者
Bing-Chuan Wang,Yan-Bo He,Jiao Liu,Biao Luo
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129667-129667 被引量:15
标识
DOI:10.1016/j.energy.2023.129667
摘要

Lithium-ion batteries encompass a comprehensive set of parameters crucial for constructing an efficient battery management system. Utilizing parameter identification assisted by the pseudo-two-dimensional (P2D) model is far more cost-effective than employing direct measurement methods. Nonetheless, the time-consuming simulations associated with the P2D model can significantly hamper the efficiency of a parameter identification algorithm. This situation would be even worse when encountering inappropriate parameter vectors, which can cause the P2D model to fail to converge, consequently leading to further computational time consumption. To address these two issues, this paper proposes a classification model-assisted Bayesian optimization (CMABO) framework for parameter identification of lithium-ion batteries. In CMABO, Bayesian optimization is employed to search for optimal parameters. Its inherent capability to leverage the complete information conveyed by historical data renders Bayesian optimization sample-efficient, thereby enhancing the efficiency of the identification process. Additionally, a classification model is established to discern parameter vectors that could lead to unsuccessful simulations of the P2D model. This additional step of classification enhances the efficiency even further. CMABO is the first attempt to consider the failed simulations of an electrochemical model when identifying parameters. Simulations and experiments show that it is more accurate and efficient than some electrochemical model-based methods including genetic algorithm (GA), particle swarm optimization (PSO), and SA-TLBO. Besides, among different acquisition functions for Bayesian optimization, the lower confidence bound reveals the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
默默冬瓜发布了新的文献求助10
4秒前
dodo应助高兴的店员采纳,获得200
5秒前
不知道起啥名字完成签到 ,获得积分10
7秒前
aowulan完成签到 ,获得积分10
8秒前
8秒前
默默的鬼神完成签到,获得积分10
10秒前
默默冬瓜完成签到,获得积分10
12秒前
刘晚柠完成签到 ,获得积分10
14秒前
xxx发布了新的文献求助10
14秒前
打打应助zcydbttj2011采纳,获得10
17秒前
18秒前
是多多呀完成签到 ,获得积分10
20秒前
龙仔完成签到,获得积分10
22秒前
TMUEH_FCL完成签到,获得积分10
22秒前
MissingParadise完成签到 ,获得积分10
22秒前
m1nt完成签到,获得积分0
23秒前
23秒前
23秒前
李健应助科研通管家采纳,获得10
23秒前
23秒前
古月发布了新的文献求助10
23秒前
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
脑洞疼应助11采纳,获得10
23秒前
ballalla完成签到,获得积分10
23秒前
茜茜完成签到 ,获得积分10
25秒前
科目三应助龙仔采纳,获得10
27秒前
古月完成签到,获得积分10
30秒前
NexusExplorer应助ballalla采纳,获得10
30秒前
852应助五月天采纳,获得10
30秒前
34秒前
小楠完成签到,获得积分10
35秒前
辛勤的小海豚完成签到,获得积分10
35秒前
Zhaoyuemeng完成签到 ,获得积分10
35秒前
翟zhai完成签到 ,获得积分20
36秒前
37秒前
40秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830345
求助须知:如何正确求助?哪些是违规求助? 3372772
关于积分的说明 10475011
捐赠科研通 3092498
什么是DOI,文献DOI怎么找? 1702090
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087