AMGCN-L: an adaptive multi-time-window graph convolutional network with long-short-term memory for depression detection

计算机科学 人工智能 图形 邻接矩阵 分类 脑电图 模式识别(心理学) 机器学习 心理学 精神科 理论计算机科学
作者
Han-Guang Wang,Qing‐Hao Meng,Li-Cheng Jin,Hui-Rang Hou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056038-056038 被引量:15
标识
DOI:10.1088/1741-2552/ad038b
摘要

Abstract Objective. Depression is a common chronic mental disorder characterized by high rates of prevalence, recurrence, suicide, and disability as well as heavy disease burden. An accurate diagnosis of depression is a prerequisite for treatment. However, existing questionnaire-based diagnostic methods are limited by the innate subjectivity of medical practitioners and subjects. In the search for a more objective diagnostic methods for depression, researchers have recently started to use deep learning approaches. Approach. In this work, a deep-learning network, named adaptively multi-time-window graph convolutional network (GCN) with long-short-term memory (LSTM) (i.e. AMGCN-L), is proposed. This network can automatically categorize depressed and non-depressed people by testing for the existence of inherent brain functional connectivity and spatiotemporal features contained in electroencephalogram (EEG) signals. AMGCN-L is mainly composed of two sub-networks: the first sub-network is an adaptive multi-time-window graph generation block with which adjacency matrices that contain brain functional connectivity on different time periods are adaptively designed. The second sub-network consists of GCN and LSTM, which are used to fully extract the innate spatial and temporal features of EEG signals, respectively. Main results. Two public datasets, namely the patient repository for EEG data and computational tools, and the multi-modal open dataset for mental-disorder analysis, were used to test the performance of the proposed network; the depression recognition accuracies achieved in both datasets (using tenfold cross-validation) were 90.38% and 90.57%, respectively. Significance. This work demonstrates that GCN and LSTM have eminent effects on spatial and temporal feature extraction, respectively, suggesting that the exploration of brain connectivity and the exploitation of spatiotemporal features benefit the detection of depression. Moreover, the proposed method provides effective support and supplement for the detection of clinical depression and later treatment procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
permanent完成签到,获得积分10
刚刚
Hhhhhhhh完成签到 ,获得积分10
刚刚
王可爱完成签到,获得积分10
2秒前
3秒前
疯子不会学完成签到,获得积分10
3秒前
朱奇凡完成签到,获得积分10
3秒前
lkla发布了新的文献求助10
3秒前
Sicecream完成签到,获得积分10
3秒前
FSR完成签到 ,获得积分10
3秒前
图图完成签到 ,获得积分10
4秒前
无情听南完成签到,获得积分10
4秒前
zj3tears发布了新的文献求助10
5秒前
Zzzz1完成签到,获得积分10
5秒前
SSS完成签到,获得积分10
6秒前
6秒前
挤爆沙丁鱼完成签到,获得积分10
6秒前
溜达鸡完成签到 ,获得积分10
8秒前
Strike完成签到,获得积分10
8秒前
酷波er应助糖布里部采纳,获得10
8秒前
量子星尘发布了新的文献求助50
9秒前
9秒前
cxy3311发布了新的文献求助10
9秒前
10秒前
10秒前
大模型应助xiaoma采纳,获得10
10秒前
李梓航完成签到 ,获得积分10
11秒前
zoeydonut发布了新的文献求助20
11秒前
Strike发布了新的文献求助10
11秒前
HKH_whut完成签到,获得积分10
12秒前
飞云完成签到,获得积分10
12秒前
proton发布了新的文献求助10
13秒前
1234发布了新的文献求助10
14秒前
羊羊崔完成签到,获得积分10
14秒前
神勇语堂发布了新的文献求助10
17秒前
17秒前
yao完成签到,获得积分10
18秒前
21秒前
君君完成签到,获得积分10
22秒前
haoliu完成签到,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082510
求助须知:如何正确求助?哪些是违规求助? 4299889
关于积分的说明 13397348
捐赠科研通 4123694
什么是DOI,文献DOI怎么找? 2258552
邀请新用户注册赠送积分活动 1262835
关于科研通互助平台的介绍 1196778