清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Usability Evaluation of a Knowledge Graph–Based Dementia Care Intelligent Recommender System: Mixed Methods Study

可用性 推荐系统 主题分析 计算机科学 痴呆 定性研究 定性性质 数据收集 万维网 应用心理学 知识管理 心理学 人机交互 医学 机器学习 病理 社会学 统计 社会科学 疾病 数学
作者
Minmin Leng,Yue Sun,Ce Li,Shuyu Han,Zhiwen Wang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45788-e45788
标识
DOI:10.2196/45788
摘要

Background Knowledge graph–based recommender systems offer the possibility of meeting the personalized needs of people with dementia and their caregivers. However, the usability of such a recommender system remains unknown. Objective This study aimed to evaluate the usability of a knowledge graph–based dementia care intelligent recommender system (DCIRS). Methods We used a convergent mixed methods design to conduct the usability evaluation, including the collection of quantitative and qualitative data. Participants were recruited through social media advertisements. After 2 weeks of DCIRS use, feedback was collected with the Computer System Usability Questionnaire and semistructured interviews. Descriptive statistics were used to describe sociodemographic characteristics and questionnaire scores. Qualitative data were analyzed systematically using inductive thematic analysis. Results A total of 56 caregivers were recruited. Quantitative data suggested that the DCIRS was easy for caregivers to use, and the mean questionnaire score was 2.14. Qualitative data showed that caregivers generally believed that the content of the DCIRS was professional, easy to understand, and instructive, and could meet users’ personalized needs; they were willing to continue to use it. However, the DCIRS also had some shortcomings. Functions that enable interactions between professionals and caregivers and that provide caregiver support and resource recommendations might be added to improve the system’s usability. Conclusions The recommender system provides a solution to meet the personalized needs of people with dementia and their caregivers and has the potential to substantially improve health outcomes. The next step will be to optimize and update the recommender system based on caregivers’ suggestions and evaluate the effect of the application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
28秒前
34秒前
crown完成签到,获得积分10
38秒前
52秒前
53秒前
实验狗发布了新的文献求助10
1分钟前
hongt05完成签到 ,获得积分10
1分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
瓦力完成签到 ,获得积分10
2分钟前
姜生在树上完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
WYK完成签到 ,获得积分10
4分钟前
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
wentao发布了新的文献求助10
4分钟前
4分钟前
5分钟前
李燊发布了新的文献求助10
5分钟前
现实的俊驰完成签到 ,获得积分10
5分钟前
Benhnhk21完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
yuhang完成签到 ,获得积分10
7分钟前
7分钟前
斯文的傲珊完成签到,获得积分10
7分钟前
研友_nE1dDn发布了新的文献求助20
7分钟前
SciGPT应助研友_nE1dDn采纳,获得10
8分钟前
习月阳完成签到,获得积分10
8分钟前
zilhua完成签到,获得积分10
8分钟前
8分钟前
李燊发布了新的文献求助10
8分钟前
沿途有你完成签到 ,获得积分10
8分钟前
烟花应助李燊采纳,获得10
8分钟前
9分钟前
Grace0621发布了新的文献求助10
9分钟前
科研通AI5应助universe_hhy采纳,获得50
9分钟前
sowhat完成签到 ,获得积分10
9分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830495
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702209
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101