Machine learning-powered electrochemical aptasensor for simultaneous monitoring of di(2-ethylhexyl) phthalate and bisphenol A in variable pH environments

邻苯二甲酸盐 过度拟合 双酚A 污染 化学 人类健康 环境科学 计算机科学 环境化学 人工智能 医学 生态学 环境卫生 有机化学 人工神经网络 环氧树脂 生物
作者
Kyungyeon Lee,Seong Min Ha,N.G. Gurudatt,Woong Heo,Kyung‐A Hyun,Jayoung Kim,Hyo‐Il Jung
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:462: 132775-132775 被引量:24
标识
DOI:10.1016/j.jhazmat.2023.132775
摘要

Plastic waste is a pernicious environmental pollutant that threatens ecosystems and human health by releasing contaminants including di(2-ethylhexyl) phthalate (DEHP) and bisphenol A (BPA). Therefore, a machine-learning (ML)-powered electrochemical aptasensor was developed in this study for simultaneously detecting DEHP and BPA in river waters, particularly to minimize the electrochemical signal errors caused by varying pH levels. The aptasensor leverages a straightforward and effective surface modification strategy featuring gold nanoflowers to achieve low detection limits for DEHP and BPA (0.58 and 0.59 pg/mL, respectively), excellent specificity, and stability. The least-squares boosting (LSBoost) algorithm was introduced to reliably monitor the targets regardless of pH; it employs a layer that adjusts the number of multi-indexes and the parallel learning structure of an ensemble model to accurately predict concentrations by preventing overfitting and enhancing the learning effect. The ML-powered aptasensor successfully detected targets in 12 river sites with diverse pH values, exhibiting higher accuracy and reliability. To our knowledge, the platform proposed in this study is the first attempt to utilize ML for the simultaneous assessment of DEHP and BPA. This breakthrough allows for comprehensive investigations into the effects of contamination originating from diverse plastics by eliminating external interferent-caused influences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
井冬完成签到 ,获得积分10
1秒前
juligulu发布了新的文献求助10
1秒前
1秒前
1秒前
李顺利应助文件撤销了驳回
2秒前
殷一丹完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
小蘑菇应助LanZY采纳,获得10
4秒前
5秒前
qise发布了新的文献求助10
6秒前
8秒前
Arusa发布了新的文献求助10
8秒前
Owen应助Hermon采纳,获得10
11秒前
研友_nVqwxL完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
OU发布了新的文献求助10
13秒前
yanghj发布了新的文献求助10
17秒前
17秒前
18秒前
sunday完成签到 ,获得积分10
18秒前
Li发布了新的文献求助10
18秒前
yaoyao完成签到,获得积分10
19秒前
Orange应助超级的洋葱采纳,获得10
19秒前
19秒前
怕黑的颜演完成签到,获得积分10
20秒前
舒心聪展完成签到,获得积分10
20秒前
玄风应助科研通管家采纳,获得10
21秒前
玄风应助科研通管家采纳,获得10
21秒前
玄风应助科研通管家采纳,获得10
21秒前
淡淡土豆应助科研通管家采纳,获得10
21秒前
ZOE应助科研通管家采纳,获得30
21秒前
玄风应助科研通管家采纳,获得10
22秒前
淡淡土豆应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
愿好应助科研通管家采纳,获得10
22秒前
淡淡土豆应助科研通管家采纳,获得10
22秒前
淡淡土豆应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527006
求助须知:如何正确求助?哪些是违规求助? 4616908
关于积分的说明 14556326
捐赠科研通 4555526
什么是DOI,文献DOI怎么找? 2496358
邀请新用户注册赠送积分活动 1476672
关于科研通互助平台的介绍 1448212