已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developments in Image Processing Using Deep Learning and Reinforcement Learning

计算机科学 人气 领域(数学) 人工智能 数据科学 深度学习 强化学习 图像处理 适应性 大数据 人工神经网络 个性化 机器学习 图像(数学) 数据挖掘 万维网 生态学 生物 社会心理学 纯数学 心理学 数学
作者
Jorge Valente,João António,Carlos León de Mora,Sandra Jardim
出处
期刊:Journal of Imaging [MDPI AG]
卷期号:9 (10): 207-207 被引量:29
标识
DOI:10.3390/jimaging9100207
摘要

The growth in the volume of data generated, consumed, and stored, which is estimated to exceed 180 zettabytes in 2025, represents a major challenge both for organizations and for society in general. In addition to being larger, datasets are increasingly complex, bringing new theoretical and computational challenges. Alongside this evolution, data science tools have exploded in popularity over the past two decades due to their myriad of applications when dealing with complex data, their high accuracy, flexible customization, and excellent adaptability. When it comes to images, data analysis presents additional challenges because as the quality of an image increases, which is desirable, so does the volume of data to be processed. Although classic machine learning (ML) techniques are still widely used in different research fields and industries, there has been great interest from the scientific community in the development of new artificial intelligence (AI) techniques. The resurgence of neural networks has boosted remarkable advances in areas such as the understanding and processing of images. In this study, we conducted a comprehensive survey regarding advances in AI design and the optimization solutions proposed to deal with image processing challenges. Despite the good results that have been achieved, there are still many challenges to face in this field of study. In this work, we discuss the main and more recent improvements, applications, and developments when targeting image processing applications, and we propose future research directions in this field of constant and fast evolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
灵巧的穆完成签到 ,获得积分10
2秒前
1111完成签到,获得积分20
4秒前
5秒前
5秒前
dkjg完成签到 ,获得积分10
7秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助圈圈采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
华仔应助丢丢银采纳,获得10
10秒前
科研通AI6应助lvlv采纳,获得10
11秒前
11秒前
一笑奈何完成签到,获得积分10
11秒前
11秒前
丘比特应助讨厌珀珀特采纳,获得10
12秒前
12秒前
欣慰梦易完成签到,获得积分10
14秒前
龙龙冲发布了新的文献求助10
15秒前
senli2018发布了新的文献求助10
16秒前
专注酸奶完成签到,获得积分10
16秒前
16秒前
jiaojiao发布了新的文献求助10
17秒前
17秒前
彭于晏应助里里要努力采纳,获得10
17秒前
精明尔芙敏完成签到 ,获得积分10
17秒前
20秒前
开心的芳发布了新的文献求助10
22秒前
可爱的函函应助过氧化氢采纳,获得10
23秒前
xushaojun发布了新的文献求助10
23秒前
丢丢银发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422260
求助须知:如何正确求助?哪些是违规求助? 4537166
关于积分的说明 14156244
捐赠科研通 4453666
什么是DOI,文献DOI怎么找? 2443040
邀请新用户注册赠送积分活动 1434436
关于科研通互助平台的介绍 1411492