Multiple vision architectures-based hybrid network for hyperspectral image classification

计算机科学 高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 块(置换群论) 特征(语言学) 特征提取 特征学习 数学 语言学 哲学 几何学
作者
Feng Zhao,Junjie Zhang,Zhe Meng,Hanqiang Liu,Zhenhui Chang,Jiulun Fan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121032-121032 被引量:23
标识
DOI:10.1016/j.eswa.2023.121032
摘要

More recently, vision transformer (ViT) has shown competitive performance with convolutional neural network (CNN) on computer vision tasks, which provided more possibilities for accurate classification of hyperspectral image (HSI). However, whether CNN or ViT, they generally only focus on single type of feature, resulting in insufficient information utilization. For instance, CNN has powerful local feature extraction ability, while ViT pays more attention to long-range dependencies and global features. To consider multiple types of feature information, we propose a multiple vision architectures-based hybrid network (MVAHN) for HSI classification, which consists of joint CNN and transformer (JCT) structure and graph convolutional module (GCM). Firstly, JCT successfully embeds convolution operations into ViT to capture local and global features, which mainly include: 1) A spectral spatial convolution block (SSCB) is proposed to unearth local spectral spatial features. 2) A convolution embedding is aggregated into self-attention to design a local–global attention (LGA) mechanism, which can realize the seamless integration of CNN and ViT, thereby capturing local–global combined features. Secondly, a plug-and-play GCM is developed in parallel with transformer encoders to further improve the model classification ability by mining the similarity relationship between pixels in HSI. Overall, an elegant integration of these seemingly distinct paradigms is realized by MVAHN to capture multiple types of feature information. The overall accuracies (OAs) of MVAHN on Pavia University, Houston 2013, Salinas Valley, Kennedy Space Center, Indian Pines and Botswana datasets are 96.37%, 88.33%, 97.57%, 98.96%, 96.25% and 99.26%, respectively. Compared with the state-of-the-art hybrid models, MVAHN achieves competitive classification results. The source code will be available at https://github.com/ZJier/MVAHN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就这样完成签到,获得积分10
1秒前
脑洞疼应助大坚果采纳,获得20
2秒前
hkh发布了新的文献求助10
4秒前
4秒前
4秒前
我真的要好好学习完成签到 ,获得积分10
6秒前
7秒前
野椒搞科研完成签到,获得积分10
7秒前
坚定啤酒发布了新的文献求助10
9秒前
10秒前
JiaqiLiu发布了新的文献求助10
10秒前
MM发布了新的文献求助10
12秒前
12秒前
D1fficulty完成签到,获得积分10
13秒前
15秒前
一期一会完成签到,获得积分10
15秒前
SciGPT应助明天见采纳,获得10
15秒前
所所应助王婷静采纳,获得30
16秒前
jun完成签到 ,获得积分10
16秒前
21秒前
Accept完成签到,获得积分10
21秒前
殊桐发布了新的文献求助10
21秒前
21秒前
25秒前
CodeCraft应助meng采纳,获得10
25秒前
旧雨新知完成签到 ,获得积分0
26秒前
是否完成签到,获得积分10
26秒前
vousme完成签到 ,获得积分10
27秒前
巴啦啦能量完成签到 ,获得积分10
29秒前
赘婿应助俭朴的猫咪采纳,获得10
30秒前
啦啦啦啦啦啦完成签到,获得积分10
31秒前
万能图书馆应助CC采纳,获得10
36秒前
生动烙完成签到,获得积分10
37秒前
38秒前
MM完成签到,获得积分10
40秒前
小皮不皮完成签到 ,获得积分20
41秒前
42秒前
生动烙发布了新的文献求助10
44秒前
44秒前
专一的从波完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921