A literature review of fault diagnosis based on ensemble learning

计算机科学 集成学习 机器学习 人工智能 领域(数学) 断层(地质) Boosting(机器学习) 一般化 数学 地质学 数学分析 地震学 纯数学
作者
Zhibao Mian,Xiaofei Deng,Xiaohui Dong,Yuzhu Tian,Tianya Cao,Kairan Chen,Tareq Al Jaber
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107357-107357 被引量:78
标识
DOI:10.1016/j.engappai.2023.107357
摘要

The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
辛欣发布了新的文献求助10
1秒前
大力的安阳完成签到 ,获得积分10
1秒前
隐形的星月完成签到,获得积分10
2秒前
cg完成签到,获得积分10
2秒前
油菜花完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
刘刘刘发布了新的文献求助30
5秒前
lyxxll完成签到,获得积分10
6秒前
7秒前
酒醉的蝴蝶完成签到 ,获得积分10
7秒前
亚李发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
李健的小迷弟应助UU采纳,获得10
9秒前
annabel发布了新的文献求助10
9秒前
10秒前
慢慢来发布了新的文献求助10
11秒前
小蜗妞妞完成签到,获得积分10
11秒前
王世卉完成签到,获得积分10
11秒前
11秒前
12秒前
yinbin完成签到,获得积分10
12秒前
张雨欣完成签到 ,获得积分10
12秒前
辛欣完成签到,获得积分20
13秒前
13秒前
嘿嘿完成签到,获得积分10
14秒前
完美世界应助啦啦啦采纳,获得10
14秒前
方减除完成签到,获得积分10
14秒前
踏实亦玉完成签到 ,获得积分20
14秒前
科研通AI6应助受伤静丹采纳,获得10
14秒前
16秒前
Sweet发布了新的文献求助10
16秒前
asdfghjkl发布了新的文献求助10
16秒前
方减除发布了新的文献求助10
17秒前
Bryce完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498931
求助须知:如何正确求助?哪些是违规求助? 4596001
关于积分的说明 14451744
捐赠科研通 4529071
什么是DOI,文献DOI怎么找? 2481812
邀请新用户注册赠送积分活动 1465811
关于科研通互助平台的介绍 1438744