亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Secure and efficient multi-key aggregation for federated learning

同态加密 计算机科学 加密 计算机安全 密文 公钥密码术 钥匙(锁) 密码学 计算机网络
作者
Yanling Li,Junzuo Lai,Rong Zhang,Meng Sun
出处
期刊:Information Sciences [Elsevier]
卷期号:654: 119830-119830 被引量:7
标识
DOI:10.1016/j.ins.2023.119830
摘要

Federated learning (FL) is a distributed machine learning framework that aims to provide privacy for local datasets while learning a global machine learning model. However, the updates exchanged in FL may indirectly reveal information about the local training datasets. To protect the confidentiality of updates, various solutions using cryptographic schemes such as secret sharing, differential privacy, and homomorphic encryption have been developed. The solutions using secret sharing often have high communication costs, while those using differential privacy require a trade-off between accuracy and privacy. Homomorphic encryption has been used to address these challenges to reduce communication costs and provide provable security. However, existing solutions based on homomorphic encryption require clients to use the same public-private key pair, which may lead to local updates disclosure. To address the existing challenges, we propose a secure and efficient multi-key aggregation protocol (MKAgg) that utilizes homomorphic encryption. The protocol allows clients to drop out at any point during the process. We construct MKAgg based on a two-server model and adopt a proxy re-encryption scheme with additively homomorphic properties to implement secure and efficient ciphertext transformation and calculation. We provide security proof to demonstrate that our MKAgg protocol meets the required security standards. Furthermore, we perform an efficiency analysis of MKAgg and evaluate its performance on various datasets. The results affirm that MKAgg is both effective and efficient for aggregation in the multi-key setting. We then apply MKAgg in FL and develop a multi-key privacy-preserving neural network scheme called MKPNFL. We analyze the security of MKPNFL and conduct tests using real-world datasets. The results demonstrate that MKPNFL is secure and practical for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
眉间尺完成签到,获得积分10
8秒前
11秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
顾矜应助读书的时候采纳,获得10
32秒前
烟里戏完成签到 ,获得积分10
38秒前
wz完成签到,获得积分10
46秒前
50秒前
55秒前
ASHhan111完成签到,获得积分10
55秒前
Lucas应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
打打应助读书的时候采纳,获得10
1分钟前
qingqingdandan完成签到 ,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
天天应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
wz发布了新的文献求助30
2分钟前
huhu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
huhu完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739796
求助须知:如何正确求助?哪些是违规求助? 5389577
关于积分的说明 15339959
捐赠科研通 4882154
什么是DOI,文献DOI怎么找? 2624193
邀请新用户注册赠送积分活动 1572913
关于科研通互助平台的介绍 1529756