Prediction of circRNA-Binding Protein Site Based on Hybrid Neural Networks and Recurrent Forests Method

计算机科学 循环神经网络 人工智能 环状RNA 卷积神经网络 核糖核酸 非编码RNA 计算生物学 人工神经网络 RNA结合蛋白 模式识别(心理学) 生物 基因 遗传学
作者
Zewen Wang,Qi Meng,Qiang Zhang,Jiahao Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 497-508
标识
DOI:10.1007/978-981-99-4749-2_42
摘要

Circular RNAs (circRNAs) play an important role in the regulation of autoimmune diseases by binding to RNA–binding proteins (RBP). Therefore studying the binding sites of RBP on cyclic RNA is crucial for our understanding of the interactions between RBP and its RNA targets. In this paper, we propose the classification method CNBM-RRF based on hybrid neural networks and recurrent forests method for identifying circRNA-RBP interaction sites. In the CNBM-DRAF method, we use four coding methods to extract four features of the cyclic RNA sequences. The features include pseudo amino acid features, pseudo dipeptide features, pseudo secondary structure features, and pseudo word vector features. Then we feed the features into the hybrid neural network to obtain the common features of the cyclic RNA sequences. The hybrid neural network includes the convolutional neural network (CNN) and the bi-directional long short-term memory network (BiLSTM). In addition we use weighted generalized canonical correlation analysis (WGCCA) to extract the common features of the four features. Finally we input common features into recurrent forests for prediction of RBP binding sites on circular RNAs. The proposed recurrent forests method is inspired by Long Short Term Memory (LSTM). We test it on 10 circRNA datasets and compare it with 7 existing methods. The experimental results show that the prediction performance of CNBM-RRF method is improved compared with that of the existing 7 methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虫二先生完成签到 ,获得积分10
2秒前
一路生花完成签到,获得积分10
2秒前
2秒前
时倾完成签到,获得积分10
2秒前
jy完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
共享精神应助背后皮卡丘采纳,获得10
4秒前
菜狗发布了新的文献求助10
6秒前
鹿城完成签到 ,获得积分10
7秒前
7秒前
雷夜蕾完成签到,获得积分10
8秒前
水门发布了新的文献求助10
9秒前
10秒前
武海素发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
yuling完成签到,获得积分10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
通行证应助科研通管家采纳,获得50
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
mdusty应助科研通管家采纳,获得10
11秒前
机灵柚子应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
lh完成签到,获得积分20
13秒前
酷波er应助布丁拿铁采纳,获得10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819110
求助须知:如何正确求助?哪些是违规求助? 3362176
关于积分的说明 10415900
捐赠科研通 3080453
什么是DOI,文献DOI怎么找? 1694480
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768382