Unsupervised domain adaptation for nuclei segmentation: Adapting from hematoxylin & eosin stained slides to immunohistochemistry stained slides using a curriculum approach

计算机科学 分割 人工智能 模式识别(心理学)
作者
Shidan Wang,Ruichen Rong,Zifan Gu,Junya Fujimoto,Xiaowei Zhan,Yang Xie,Guanghua Xiao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:241: 107768-107768 被引量:7
标识
DOI:10.1016/j.cmpb.2023.107768
摘要

Unsupervised domain adaptation (UDA) is a powerful approach in tackling domain discrepancies and reducing the burden of laborious and error-prone pixel-level annotations for instance segmentation. However, the domain adaptation strategies utilized in previous instance segmentation models pool all the labeled/detected instances together to train the instance-level GAN discriminator, which neglects the differences among multiple instance categories. Such pooling prevents UDA instance segmentation models from learning categorical correspondence between source and target domains for accurate instance classification; METHODS: To tackle this challenge, we propose an Instance Segmentation CycleGAN (ISC-GAN) algorithm for UDA multiclass-instance segmentation. We conduct extensive experiments on the multiclass nuclei recognition task to transfer knowledge from hematoxylin and eosin to immunohistochemistry stained pathology images. Specifically, we fuse CycleGAN with Mask R-CNN to learn categorical correspondence with image-level domain adaptation and virtual supervision. Moreover, we utilize Curriculum Learning to separate the learning process into two steps: (1) learning segmentation only on labeled source data, and (2) learning target domain segmentation with paired virtual labels generated by ISC-GAN. The performance was further improved through experiments with other strategies, including Shared Weights, Knowledge Distillation, and Expanded Source Data.Comparing to the baseline model or the three UDA instance detection and segmentation models, ISC-GAN illustrates the state-of-the-art performance, with 39.1% average precision and 48.7% average recall. The source codes of ISC-GAN are available at https://github.com/sdw95927/InstanceSegmentation-CycleGAN.ISC-GAN adapted knowledge from hematoxylin and eosin to immunohistochemistry stained pathology images, suggesting the potential for reducing the need for large annotated pathological image datasets in deep learning and computer vision tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rose完成签到,获得积分10
1秒前
coconut完成签到 ,获得积分10
1秒前
3秒前
7秒前
8秒前
9秒前
合适依秋发布了新的文献求助10
9秒前
gougoutu完成签到,获得积分10
10秒前
10秒前
11秒前
卑微老大发布了新的文献求助10
14秒前
干饭大王完成签到,获得积分10
14秒前
天天快乐应助yaya采纳,获得10
15秒前
916应助杨蔚达采纳,获得10
15秒前
gougoutu发布了新的文献求助10
16秒前
17秒前
loong发布了新的文献求助10
17秒前
豆子完成签到,获得积分10
17秒前
香蕉觅云应助shine采纳,获得10
20秒前
22秒前
ppg123应助听雨轩采纳,获得20
22秒前
张大大完成签到,获得积分10
22秒前
24秒前
豆子完成签到,获得积分0
25秒前
loong完成签到,获得积分20
27秒前
张大大发布了新的文献求助10
28秒前
28秒前
ding应助wangjie采纳,获得10
30秒前
30秒前
David完成签到,获得积分10
32秒前
华仔应助gougoutu采纳,获得10
35秒前
完美元柏发布了新的文献求助10
37秒前
misong发布了新的文献求助10
37秒前
FashionBoy应助weixiaozdw采纳,获得10
43秒前
苑小苑完成签到,获得积分10
43秒前
45秒前
handsomelin给handsomelin的求助进行了留言
45秒前
领导范儿应助小夜盲J采纳,获得10
45秒前
sophia完成签到 ,获得积分10
47秒前
47秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977850
求助须知:如何正确求助?哪些是违规求助? 3522015
关于积分的说明 11211196
捐赠科研通 3259254
什么是DOI,文献DOI怎么找? 1799573
邀请新用户注册赠送积分活动 878417
科研通“疑难数据库(出版商)”最低求助积分说明 806899