沥青
流变学
材料科学
复合材料
沥青质
傅里叶变换红外光谱
紫外线
蠕动
化学工程
工程类
光电子学
作者
Liang Song,Xiaodong Xie,Tu Pengcheng,Jingjing Fan,Jie Gao
出处
期刊:Materials
[MDPI AG]
日期:2023-08-16
卷期号:16 (16): 5641-5641
被引量:10
摘要
In order to investigate the potential application of low-grade hard asphalt in high-temperature and high-altitude areas, various tests were conducted to analyze the performance and high-temperature rheological properties of 30#, 50#, and 70# matrix asphalt under thermo-oxidative aging and ultraviolet aging. The tests utilized for analysis included the examination of basic asphalt properties, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), gel permeation chromatography (GPC), dynamic shear rheology (DSR), and multi-stress creep recovery (MSCR). The results indicate a progressive decrease in asphalt performance with increasing aging time. Prolonged exposure to thermal oxygen aging and ultraviolet irradiation significantly diminishes the plasticity of asphalt. The carbonyl index and sulfoxide index of asphalt increase after thermal oxygen aging and ultraviolet aging. Notably, 30# asphalt demonstrates greater resistance to aging compared to 50# and 70# asphalt under long-term high ultraviolet radiation. The LMS% of 30#, 50#, and 70# asphalt increases by 14%, 15%, and 16%, respectively. Following photothermal oxidative aging, a larger proportion of lighter components in the asphalt transforms into resins and asphaltenes. The high-temperature rheological properties of the three types of asphalt rank as 30# > 50# > 70#, while within the same type of asphalt, the high-temperature rheological properties rank as PAV > UV3 > UV2 > UV1 > RTFOT > virgin. Elevating temperature, stress level, and stress duration negatively impact the high-temperature stability of asphalt. In general, low-grade asphalt demonstrates superior anti-aging ability and high-temperature rheological properties during the aging process.
科研通智能强力驱动
Strongly Powered by AbleSci AI