Hiding Multiple Images into a Single Image Using Up-Sampling

信息隐藏 隐写分析技术 人工智能 隐写术 计算机科学 计算机视觉 稳健性(进化) 像素 块(置换群论) 模式识别(心理学) 图像质量 图像缩放 图像(数学) 图像处理 数学 生物化学 化学 几何学 基因
作者
Ping Ping,Buyu Guo,Olano Teah Bloh,Yingchi Mao,Feng Xu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 4401-4415 被引量:2
标识
DOI:10.1109/tmm.2023.3322316
摘要

The goal of multiple-image hiding is to hide several secret images within another carrier image without significantly changing its appearance, and then perfectly reconstruct all of the secret images. The challenge is to ensure that the stego-image has great visual quality and can resist various steganalysis under the premise of hiding as much information as possible in one image. To address this issue, the majority of known image-hiding methods focus on hiding images using compression techniques. In this paper, we present a novel multiple-image hiding method based on up-sampling and reversible color transformation. First, the interpolation algorithm up-samples the carrier image, so that the attribute of similar neighboring pixel values in the up-sampled image can significantly improve the effect of image hiding. The embedding procedure is then performed using the proposed Euclidean Distance (ED)-based block matching and reversible color transformation, which decreases the chance of local blurring in the stego-image. Experimental results show that the proposed method surpasses existing advanced methods by achieving an average of 33 dB and 28 dB of PSNR for the stego-image with a hiding capacity 2 BPP and 8 BPP, and obtaining 100% reconstructing accuracy for all secret images. It also has a high level of resistance to steganalysis and a strong robustness against various image-processing attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cappuccino完成签到 ,获得积分10
刚刚
Kiosta应助Fred采纳,获得30
1秒前
呦呦又鹿发布了新的文献求助10
2秒前
littlestone完成签到,获得积分10
3秒前
充电宝应助阳光的道消采纳,获得10
4秒前
合适秋寒完成签到 ,获得积分10
4秒前
桐桐应助Rhannnn采纳,获得10
5秒前
xL关注了科研通微信公众号
9秒前
汉堡包应助企鹅乌云采纳,获得10
12秒前
科目三应助伯劳采纳,获得10
12秒前
搜集达人应助内向煎饼采纳,获得10
13秒前
14秒前
大约在冬季完成签到,获得积分10
16秒前
烟花应助桔梗采纳,获得10
16秒前
研友_Z7gKEZ完成签到,获得积分10
18秒前
飞飞完成签到 ,获得积分10
18秒前
cryscilla完成签到,获得积分10
18秒前
小齐天完成签到,获得积分20
18秒前
19秒前
xx发布了新的文献求助10
19秒前
19秒前
20秒前
旺仔发布了新的文献求助10
20秒前
陈YX关注了科研通微信公众号
20秒前
研友_VZG7GZ应助cryscilla采纳,获得10
23秒前
25秒前
25秒前
呦呦又鹿完成签到,获得积分10
26秒前
27秒前
科研通AI2S应助刻苦大叔采纳,获得10
27秒前
27秒前
拾姑娘的小稻穗给拾姑娘的小稻穗的求助进行了留言
27秒前
田一点完成签到,获得积分10
28秒前
企鹅乌云发布了新的文献求助10
29秒前
阿杜发布了新的文献求助10
30秒前
Orange应助侯谋采纳,获得10
30秒前
31秒前
punker发布了新的文献求助10
32秒前
33秒前
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351