MMF-NNs: Multi-modal Multi-granularity Fusion Neural Networks for brain networks and its application to epilepsy identification

计算机科学 粒度 人工神经网络 情态动词 鉴定(生物学) 癫痫 人工智能 融合 机器学习 神经科学 心理学 语言学 化学 植物 哲学 高分子化学 生物 操作系统
作者
Jiashuang Huang,Xiaoyu Qi,Xueyun Cheng,Mingliang Wang,Hengrong Ju,Weiping Ding,Daoqiang Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102990-102990
标识
DOI:10.1016/j.artmed.2024.102990
摘要

Structural and functional brain networks are generated from two scan sequences of magnetic resonance imaging data, which can provide different perspectives for describing pathological changes caused by brain diseases. Recent studies found that fusing these two types of brain networks improves performance in brain disease identification. However, traditional fusion models combine these brain networks at a single granularity, ignoring the natural multi-granularity structure of brain networks that can be divided into the edge, node, and graph levels. To this end, this paper proposes a Multi-modal Multi-granularity Fusion Neural Networks (MMF-NNs) framework for brain networks, which integrates the features of the multi-modal brain network from global (i.e., graph-level) and local (i.e., edge-level and node-level) granularities to take full advantage of the topological information. Specifically, we design an interactive feature learning module at the local granularity to learn feature maps of structural and functional brain networks at the edge-level and the node-level, respectively. In that way, these two types of brain networks are fused during the feature learning process. At the global granularity, a multi-modal decomposition bilinear pooling module is designed to learn the graph-level joint representation of these brain networks. Experiments on real epilepsy datasets demonstrate that MMF-NNs are superior to several state-of-the-art methods in epilepsy identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
明亮巨人完成签到 ,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
shinysparrow应助科研通管家采纳,获得200
刚刚
田様应助科研通管家采纳,获得10
1秒前
美女完成签到,获得积分10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
蛙鼠兔完成签到,获得积分10
2秒前
草莓伯伯给草莓伯伯的求助进行了留言
2秒前
篮球完成签到,获得积分10
3秒前
聪慧的凡灵应助Wang采纳,获得20
3秒前
3秒前
开放的大侠完成签到,获得积分10
3秒前
pianokjt完成签到,获得积分10
4秒前
温柔的幻露完成签到,获得积分10
5秒前
小谢完成签到,获得积分10
5秒前
porcelain完成签到,获得积分10
5秒前
5秒前
可爱的函函应助hui采纳,获得10
5秒前
小步快跑完成签到,获得积分10
6秒前
6秒前
一人一般完成签到,获得积分10
6秒前
xyawl425完成签到,获得积分10
6秒前
JamesPei应助hkh采纳,获得10
6秒前
秦泽咩咩关注了科研通微信公众号
7秒前
小鲨鱼完成签到,获得积分10
8秒前
9秒前
无花果应助xj305采纳,获得10
9秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886126
求助须知:如何正确求助?哪些是违规求助? 3428236
关于积分的说明 10758754
捐赠科研通 3153010
什么是DOI,文献DOI怎么找? 1740776
邀请新用户注册赠送积分活动 840369
科研通“疑难数据库(出版商)”最低求助积分说明 785343