能量收集
压电
电压
消散
功率(物理)
功率密度
发电
电气工程
能量(信号处理)
均方根
巴(单位)
最大功率原理
连接(主束)
拓扑(电路)
材料科学
电子工程
工程类
声学
机械工程
物理
热力学
气象学
量子力学
作者
Wenjie Zhang,Yang Shang,Hongyu Jiang,Fanxin Meng,Haixia Zhao,Weijie Shi
标识
DOI:10.1002/ente.202400867
摘要
This study introduces a new symmetrical hydraulic piezoelectric energy harvester. By integrating theoretical analysis, simulation, and empirical testing, the research delves into the energy‐harvesting potential of monolithic single‐side output, monolithic two‐side parallel‐connected output, stacked one‐side parallel‐connected output, and stacked two‐side parallel‐connected output under varying parameter configurations. Additionally, it elucidates the energy dissipation occurring during the energy‐harvesting process of stacked piezoelectric disks. It has been observed that the primary determinant of voltage is the amplitude of pulsation, not the static pressure. Concurrently, the study also addresses the consistency of power generation between multiple channels. A study is made on whether there is a proportional relationship between single‐channel power generation and multi‐channel power generation. The root mean square (RMS) voltage of each connection sharply rises with resistance from 2 to 100 KΩ. It is found that the performance of parallel connection of monolithic piezoelectric disk is better than that of other connection methods. At 3 MPa and 100 Hz, the optimal resistance is 16 KΩ, yielding a maximum average power of 1155.63 μW and an optimal power density of 1.774 μW (bar mm 3 ) −1 . Consequently, the research offers a novel approach to addressing the issue of sustainable energy supply for low‐power electronic devices and sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI