生物制药
蛋白质稳定性
化学
缓冲器(光纤)
生化工程
色谱法
计算机科学
生物技术
生物化学
工程类
生物
电信
作者
Blaž Lebar,Mitja Zidar,Janez Mravljak,Roman Šink,Aleš Žula,Stane Pajk
标识
DOI:10.2478/acph-2024-0022
摘要
Abstract The formulation of biopharmaceutical drugs is designed to eliminate chemical instabilities, increase conformational and colloidal stability of proteins, and optimize interfacial stability. Among the various excipients involved, buffer composition plays a pivotal role. However, conventional buffers like histidine and phosphate buffers may not always be the optimal choice for all monoclonal antibodies (mAbs). In this study, we investigated the effects of several alternative buffer systems on seven different mAbs, exploring various combinations of ionic strengths, concentrations of the main buffer component, mAb concentrations, and stress conditions. Protein stability was assessed by analyzing soluble aggregate formation through size exclusion chromatography. At low protein concentrations, protein instability after temperature stress was exclusively observed in the bis-TRIS/ glucuronate buffer. Conversely, freeze-thaw stress led to a significant increase in aggregate formation in tested formulations, highlighting the efficacy of several alternative buffers, particularly arginine/ citrate, in preserving protein stability. Under temperature stress, the introduction of arginine to histidine buffer systems provided additional stabilization, while the addition of lysine resulted in protein destabilization. Similarly, the incorporation of arginine into histi-dine/HCl buffer further enhanced protein stability during freeze--thaw cycles. At high protein concentrations, the histidine/citrate buffer emerged as one of the most optimal choices for addressing temperature and light-induced stress. The efficacy of histidine buffers in combating light stress might be attributed to the light-absorbing properties of histidine molecules. Our findings demonstrate that the development of biopharmaceutical formulations should not be confined to conventional buffer systems, as numerous alternative options exhibit comparable or even superior performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI